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 In this study, an attempt has been made to compare the performance of a 

conventional solar still (CSS) with a modified solar still (MSS) augmented with 

sponges. Two identical single-slope solar stills have been built for this purpose, with 

sponges placed in the basin area to enhance capillary action-induced storage capacity 

and water surface area. Outdoor experiments were conducted under real weather 

conditions at Raghogarh, Guna (24° 39′N, 77° 19′E), India, for a basin water mass of 

40 kg. The experimental results demonstrated a noticeable boost in distillation and 

efficiency when the CSS was modified with sponges. The cumulative distillate yield 

of MSS was observed to be 16.38% higher than that of CSS. The presence of sponges 

improved the overall efficiency of the still by 16.39%, reaching 36.86% compared to 

31.67% for CSS. Sponges contributed to an 18.31% increase in distillate yield during 

the daytime and a 9.78% increase during nighttime, indicating their effectiveness in 

improving heat retention and capillary-assisted evaporation. Furthermore, multiple 

machine learning models were evaluated for predicting the performance of solar 

stills. Among the tested models, XGBoost demonstrated superior accuracy with an R² 

value of 0.9693 and minimal standard deviation, highlighting its robustness and 

reliability. The results highlight that integrating sponges with a conventional solar 

still can significantly enhance its efficiency and productivity, making it a viable 

solution for improving freshwater production. 

Keywords 

Solar still 

Artificial intelligence 

Desalination 

Sustainability 

Sponges 

1. Introduction 

Worldwide people are affected by the lack of 

drinkable water due to various climatic changes, 

rapid industrialization and overpopulation. 

Desalination has been one of the economical and 

environmentally friendly method for extracting 

freshwater from saltwater. It uses continuous solar 

energy to produce freshwater [1]. Traditional 

method such with multi-stage flash distillation 

and reverse osmosis are dependent on fossil fuel. 

This method utilizes freely available solar energy 

a sustainable alternative method to produce 

freshwater from renewable energy source. 

However, conventional solar still have some 

limitations like low distillate yield, heat 

absorption and water evaporation [2]. So, to 

overcome from these limitations, various types of 

sensible heat storage materials (SHSMs) are used 

to increase the heat absorb, to increase the overall 

effectiveness of the conventional solar still (CSS) 

[3]. In-depth study on various heat exchange 

mechanisms such as thermal energy storage and 

phase change material are reported by researchers 

and scientists [4, 5].  

Toosi et al. [6] have experimentally studied the 

use of hybrid NPCM, PCM and a magnetic field 

in a stepped solar still. The have reported boost on 

production rate by up to 98%. Bhargva et al. [7] 

have reported 19% improved productivity of the 
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modified solar still (MSS) when a bamboo cotton 

wick was placed over the rectangular fins in the 

still basin in comparison to regular still. Dumka et 

al. [8] have studied the performance of solar still 

augmented with saltwater bottles. They have 

reported 25% increment in the efficiency of MSS 

as compared to CSS. Incorporation of saltwater 

bottles as thermal energy storage reservoirs have 

notable reduction in the cost of production 

distillate significantly by 20%. Safari et al. [9] 

have provided an extensive and comparative 

assessment of thermochemical water splitting 

cycles. Permanent ferrite ring magnets have been 

added by Dumka et al. [10] to serve as a sensible 

heat pocket and lessen the surface tension of 

water. According to Farzi et al. [11] the 

performance of CSS is impacted by the ideal grain 

size distribution. They demonstrated greater 

productivity and thermal efficiency were achieved 

by the sand-containing treatment with an average 

grain size of 2.8 mm. Goshayeshi et al. [12] have 

researched more effective desalination system, 

which suggested daily freshwater output in solar 

stills is greatly increased by adding paraffin 

containing 0.5 mass percent graphene oxide to a 

semicircular absorber. Dumka et al. [13] examine 

the presence of glass bottles packed with sand has 

resulted in a 139.45% boost in overall internal 

efficiency and the modified solar still (MSS) has 

produced 21.32% more than conventional solar 

still (CSS). To improve cooling technology, Basiri 

et al. [14] determined optimal design parameters 

and developed empirical formulas for computing 

the average Nusselt number by examining the air-

side thermal performance of rectangular plate heat 

sinks under coupled convection. 

Hashemian and Noorpoor [15] have reported 

study on an environmental analysis of a 

solar/wind-powered multigeneration unit that 

produces hydrogen and ammonia using thermos-

eco. Dumka et al. [16] investigated the efficiency 

of a CSS by adding JCBs (jute-covered plastic 

balls) to it. They have reported 32.76% increment 

in overall thermal efficiency of MSS. The 

application of honeycomb pads to enhance the 

distillate production from the solar still by 

increasing the evaporation surface through 

capillarity was investigated by Kumar et al. [17]. 

Furthermore, Dumka et al. [18] reported using 

heat localisation and capillary rise in jute to 

improve the CSS's performance by combining 

plexiglass and jute. By altering the basin water 

mass, Kabeel et al. [19] investigated the effect of 

jute fabric made with sand as thermal energy 

storage on a CSS’s production. For the basin 

water mass of 20kg from CSS, they have recorded 

distillate output of 5.5 and 5.9 kg/m2, 

respectively, without and with jute cloth knotting 

and sensible heat storage materials. Dumka and 

Mishra [20] experimentally reported a notable 

increase in the mean thermal efficiency by 

31.04% by using ultrasonic fogger in MSS. They 

have also reported that the MSS produced 9.89% 

lower per liter cost of freshwater water. Despite 

significant advancements there is still a critical 

gap in the use of energy storage strategies for 

boosting the performance of conventional solar 

stills.  

An effective approach for simulating and 

predicting the performance of solar thermal 

systems, such as solar stills, is machine learning 

[23].  By providing precise and efficient 

predictions under various climatic and design 

circumstances, these data-driven models aid in 

overcoming the drawbacks of experimental 

techniques [24].  To forecast the hourly yield of a 

modified solar still enhanced with sponges, many 

regression methods were assessed in this work, 

including Support Vector Regression (SVR), 

Random Forest, Gradient Boosting, and XGBoost 

[25].  Extensive field testing is greatly reduced 

when machine learning is used into solar still 

research, facilitating quick optimization and 

design validation [26]. 

Although there is substantial amount of 

potential for improving the sustainability and 

economic viability of solar stills through the 

integration of sponge for thermal energy storage. 

Therefore, the present study assessed how the 

performance of solar still was affected using 

natural storage material (Lofa Sponge). Analysis 

and reporting of the experimental results from the 

outdoor experiments conducted in November and 

December of 2024 have been completed. Sponges 

have been found to significantly increase the 

distillate production and efficiency in Modified 

solar still as compared to conventional solar still. 

Also, to enable precise and quick predictions of 

solar still performance, machine learning 

integration minimises experimental expenses and 

time while maximising system efficiency in the 

actual world. 

 

2. Experimental setup 

The experimentation was conducted in JUET 

Guna, India (24° 39′N, 77° 19′E), in November 

and December 2024. To conduct this study, two 

identical, single slope conventional solar still 

(CSS) with a basin size 1m2 were installed using 

FRP material that was 5mm thick. Its upper and 
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lower vertical sides are, respectively, 0.48 and 0.2 

meters high. The interior surface of solar stills 

was painted black to improve solar energy 

absorption. The solar still has been covered with a 

4 mm thick transparent iron glass at a 15.6° angle 

to the ground. 
 

 
 

Figure 1. Diagrammatic representation of CSS. 
 

Thirty-five sponges were compressed from 

cotton thread, measuring 13.2 cm average height 

and 3 cm average outer diameter. These sponges 

are coated with a thin coating of black fabric dye 

to improve its absorptivity of solar radiation. 

These sponges are used in the still for two 

reasons: first, they boost the surface are of the 

water by capillary action, which will improve the 

distillate output; second, they serve as natural 

energy storage in the still. The sponge-containing 

still is referred to as modified solar still (MSS). To 

maximize the floor area and prevent any sponge 

from interfering with one another, the sponges 

were positioned equally (Zigzag) apart inside the 

MSS basin tray. Figures 2 and 3 depict the layout 

of a sponges and the positioning of sponges in the 

tray, respectively. 

 

 
Figure 2. Diagrammatic of a sponge. 

 

 
Figure 3. Arrangement of sponges in MSS 

 

To measure the temperature of the 

atmosphere, inside and outside water, glass and 

basin, five K-type thermocouples (K 7/32-2C-

TEF) were placed in the MSS as shown in Figure 

4. Two more thermocouples were present to gauge 

the sponges inside and outside temperatures. A 

variety of temperatures were measured using a 

DTC324A-2 temperature indicator. During the 

experiment, an LX-107 solar power meter was 

used to detect incident sun radiation. 
 

 
 

Figure 4. Diagrammatic representation of MSS. 
 

Type B uncertainties are taken into 

consideration since it is expected that the data is 

distributed consistently among the experiment. 

This kind of standard uncertainty is assessed as 

[21]: 
 

u = a/√3 (1) 
 

Where a indicates the measuring device's 

accuracy. The standard uncertainty, range, and 

accuracy of the measurement devices are shown 

in Table 1. 

Experiments were carried out un=sing two 

distinct basin water masses, namely 30 and 40 kg. 

Each experimental run lasts for 24 h. The field 

experiments yielded the following findings: 
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 Temperature of the atmosphere, basin 

water, inside and outside glass, and 

sandbags. 

 The amount of solar radiation that strikes 

an angled glass cover. 

 The output of distillation is done every 

hour. 

 

Table 1. Accuracy, range, and standard uncertainty of measuring instruments 
 

Instrument Accuracy Range Standard uncertainty 

Graduated Cylinder ±1 ml 0 - 250 ml 0.6 ml 

Thermocouple ±0.1ºC -100 - 500ºC 0.06ºC 

Solar Power meter ±10 W/m2 0 - 1999 W/m2 5.77 W/m2 

 

The solar overall efficiency of a solar still is 

defined as the ratio of the thermal energy required 

to generate a specific volume of distillate output 

to the total solar energy input. This may be stated 

mathematically as [22]: 

 

η
i=

∑(ṁew×L)
∑(I(t)×Aw×L)

×100
 (2) 

 

Where L is assessed by using the relation [10] 

and Tv = (Tw + Tci) 2⁄ . 

 

3. Observation, results and disvussion 

The amount of solar radiation that is incident 

and the surrounding temperature change 

throughout the duration of the day are shown in 

Figure 5.  The intensity of solar radiation began at 

around 400 W/m² in the morning and peaked at 

980 W/m² at around 13:00. By 18:00, it had 

progressively decreased to almost 0 W/m².  the 

experiment, there were little changes in the 

ambient temperature.  The graph shows how the 

intensity of solar radiation directly affects the 

thermal performance of the system. 

 

Figure 6 shows the inner glass temperature 

(Tci) and basin water temperature (Tw) change 

over time in CSS and MSS for a 40 kg basin water 

mass. Up until 15:00 hours, CSS's Tw is slightly 

higher than MSS's, after that, MSS overtakes CSS 

and holds a lead until the experiment's conclusion. 

This pattern results from the sponges in MSS 

having a greater capacity to retain heat, which 

aids in the progressive release and storage of heat 

over time. Similar trends have been seen in the 

inner glass temperature (Tci), with CSS having a 

little higher Tci than MSS in the early hours 

because of direct solar exposure. However, around 

15:00 h, MSS overtakes CSS, demonstrating 

efficient heat retention and transmission inside the 

system. While Tci hits 52.8°C in MSS and 54.3°C 

in CSS, the highest temperatures measured for 

basin water mass are 54.5°C for Tw in MSS and 

56.1°C in CSS. The capillary rise-assisted 

evaporation from sponge surfaces in MSS is the 

primary cause of the minor difference in Tw 

between MSS and CSS, even though the Tw of 

MSS exceeds CSS after midday. However, MSS's 

effectiveness in long-term heat absorption and 

storage is highlighted by its capacity to hold and 

maintain greater temperatures in the latter hours. 

 

 
 

Figure 5. Solar radiation intensity and ambient 

temperature over time 
 

 
Figure 6. Basin water versus inner glass 

temperature. 
 

The variation in MSS's sponge surface 

temperature (Tlofa) and basin water temperature 

(Tw) over time is depicted in Figure 7. Around 

15:00, the highest recorded temperatures for Tlofa 

and Tw were 50.3°C and 51.7°C, respectively. At 

first, Tlofa closely tracks Tw, suggesting that the 
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sponges are effectively absorbing heat. But after 

15:00, Tlofa falls behind Tw, which is explained 

by the cooling impact caused by the 

sponge’s faster rate of evaporation than that of the 

free water surface. By ensuring a steadier drop in 

temperature during the later hours of the 

experiment, this occurrence emphasises the 

function of sponges in controlling heat retention 

within the system. 
 

 
 

Figure 7. Sponge versus basin water temperature in 

MSS 
 

Figure 8 demonstrates the hourly fluctuation 

of the distillate yield derived from MSS and CSS 

for the specified water mass. With a maximum 

production of 325 ml for MSS and 312 ml for 

CSS, respectively, MSS has a 4.17% higher yield. 

Because of the improved evaporation rate and 

perceptive energy storage in MSS, the overall 

yield reported from Modified CSS and CSS is 

2.316 L and 1.99 L, respectively. This results in an 

overall improvement of 16.38% in cumulative 

distillate output. During the day (≤18 hours), the 

distillate yield improvement for MSS over CSS is 

18.31%, while during the night (>18 hours), it is 

9.78%. This enhanced nighttime production is a 

result of sponges' increased surface area, capillary 

rise, and energy storage capacity. These results 

imply that sponges greatly increase CSS's 

everyday output. 

 

 
Figure 8. Distillate output comparison for MSS and 

CSS 
 

 
Figure 9. Overall efficiency of MSS and CSS 

 

The total effectiveness of CSS and MSS is 

shown in Figure 9. For CSS and MSS, the 

corresponding efficiencies are 31.67% and 

36.86%. The system's total efficiency has 

increased by 16.39% after the sponges were 

supplemented with CSS. MSS is now more 

efficient thanks to the strong capillary action-

assisted evaporation from the sponges. 

To further validate the results received form 

the experiment and for future predictions and 

analysis authors have tested the data by using 

different algorithms (e.g., linear regression, 

random forest, decision tree,  support vector 

regressor and gradient boosting). This helps 

capture the complex thermal and physical 

behaviour involved in solar evaporation and 

condensation. Basic models like Linear 

Regression provide a starting point, but often fail 

to capture nonlinear relationships in solar still 

performance data. Tree-based models like 

Decision Tree and Random Forest are better at 

handling nonlinearity and feature interactions. 

They can model sudden changes in productivity 

due to varying sponge material or ambient 

conditions. Similarly, Support Vector Regressor 

(SVR) and Gradient Boosting Regressor (GBR) 

offer robustness and precision, especially in small 

or noisy datasets. 

The correlation matrix presents high 

correlation between MSS and CSS due to similar 

parameters (e.g.,Tw, Tci), suggesting consisteny 

between the methods as shown in Figure 10. This 

matrix presents that the MSS_Tlofa shows a 

strong positive correlation with MSS_Mew which 

shows the strong potential as a strong predictor. 

The boxplot clearly differentiates MSS_Mew 

and CSS_Mew shown in Figure 11, as the MSS is 

having lofa in it that why it is showing higher 

median and wider spread compared to CSS_Mew. 

This indicates that MSS consistently yields more 

evaporated water across varying conditions. The 

wider spread also suggests that MSS responds 

more dynamically to environmental changes, 

which is beneficial for optimization. 
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Figure 10. Correlation matrix – MSS and CSS 

 

 
Figure 11. Comparison between MSS and CSS 

Methods 
 

Figure 12 is the pairplot shows strong linear 

relationships between MSS_Mew and features 

like MSS_Tw, MSS_Tci, and MSS_Tlofa. These 

relationships suggest that as the temperature in the 

basin and surrounding surfaces increases, the 

amount of water evaporated also increases in a 

linear fashion, which is expected due to the 

enhanced evaporation at higher temperatures. 

MSS_I shows a less direct, possibly non-linear, 

relationship with MSS_Mew. This is since while 

solar irradiance drives the heating process, its 

effect on productivity is mediated through the 

temperature rise of water and other components, 

which might introduce some non-linearity or time 

lag in the response. Also, multicollinearity among 

the temperature features (MSS_Tw, MSS_Tci, 

MSS_Tlofa) is evident. This means these 

variables are highly correlated with each other—

likely because they all respond similarly to solar 

input and heat transfer in the still. 

The findings of the single split and cross-

validation analyses of the Linear Regression 

model differ significantly as shown in Figure 13.  

With an MSE of 1843.917 and an R
2
 of 0.848, the 

model exhibits good performance on a single 

train-test split, suggesting a strong fit.  The model, 

however, shows very high error (Mean MSE: 

44706.633) and a substantially negative R
2
 (Mean 

R
2
: -116.557) with large standard deviations 

during 5-fold cross-validation.  This implies that 

the model may be extremely sensitive to data 

volatility and is not generalising well across 

various data splits. 

Featuring a lower MSE of 1335.333 and a 

higher R
2
 of 0.890, the adjusted Decision Tree 

model outperforms Linear Regression on a single 

train-test split, demonstrating significant 

predictive capabilities on the given split as shown 

in Figure 14.  Cross-validation findings, however, 

suggest inconsistency: the model has a significant 

standard deviation and a higher Mean MSE of 

11193.233 with a negative Mean R
2
 of -12.840.  

These differences show that the model lacks 

generalisation over the entire dataset, even though 

it fits well to data subsets.  Despite being more 

effective than linear models in capturing non-

linear relationships, decision trees are less 

dependable without adequate regularisation due to 

a tendency to overfit. 
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Figure 12. Pairplot of MSS features and target 

 

 
Figure 13. MSS_Mew Prediction using Linear 

Regression 
 

 
Figure 14. MSS_Mew Prediction using Decision 

Tree 
 

 
Figure 15. MSS_Mew Prediction using Random 

Forest 
 

 
Figure 16. MSS_Mew Prediction using Support 

Vector Regressor 
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Using 100 n_estimators and no depth 

limitation, the tweaked Random Forest model 

performs moderately on the single train-test split 

(MSE: 3668.564, R
2
: 0.698), suggesting that it 

may account for a portion of the variation in 

MSS_Mew. The model's performance, however, 

drastically declines over 5-fold cross-validation, 

exhibiting a high Mean MSE of 10185.986, a 

negative Mean R
2
 of -14.846, and a sizable 

standard deviation as shown in Figure 15. 

With an MSE of 2123.261 and an R
2
 of 0.825, 

the adjusted Support Vector Regressor (SVR), set 

up with C=100, gamma='auto', and a rbf kernel, 

performs well on the single train-test split, 

suggesting a strong fit to that subset. With a high 

Mean MSE of 8669.841 and a highly negative 

Mean R
2
 of -19.617, together with a huge standard 

deviation, its performance drastically declines 

after 5-fold cross-validation as depicted in Figure 

16. 

 

 
Figure 17. MSS_Mew Prediction using Gradient 

Boosting 
 

Figure 17 shows a combination of an MSE of 

2665.715 and R
2
 of 0.781, the tuned Gradient 

Boosting Regressor, optimised with 

learning_rate=0.2, max_depth=3, and 

n_estimators=200, performs rather well on the 

single split evaluation. However, as demonstrated 

by a high Mean MSE of 10525.234 and a negative 

Mean R
2
 of -13.450 with a huge standard 

deviation, its generalisation ability significantly 

decreases throughout 5-fold cross-validation. This 

notable decline implies that although the model 

successfully identifies patterns in a single split, it 

finds it difficult to remain consistent over different 

data splits.  

When it came to predicting the output of the 

single slope solar still enhanced with sponges, the 

XGBoost model performed well as shown in 

Figure 18. With an R
2 
score of 0.855 and an MSE 

of 1760.369 in the single train-test split, XGBoost 

was able to explain approximately 85.5% of the 

output variance with a comparatively low 

prediction error. Additionally, its 5-fold cross-

validation findings indicate that it predicts more 

consistently across folds than other models, with 

the lowest standard deviations (MSE: 6959.529, 

R
2
: 8.598) and a mean MSE of 8472.196 and 

mean R
2
 of -10.191. Although the Decision Tree 

demonstrated a slightly superior R² in a single 

split (0.890), it had more variability in cross-

validation. XGBoost provides a better balance 

between accuracy and generalization. 

 

 
Figure 18. MSS_Mew Prediction using XGBoost 

 

 
Figure 18. Model Comparison: Mean R

2 
from 5-

Fold Cross-Validation 
 

The mean R
2
 scores from 5-fold cross-

validation are used in this bar chart to compare six 

machine learning models' performance as shown 

in Figure 18.  The model's ability to explain the 

variance in the target variable (solar still output) is 

indicated by the R
2
 value.  Among advanced 

models, XGBoost (Tuned) has the shortest 

standard deviation and the least negative R
2
 value, 

indicating reasonably solid and reliable 

predictions.  On the other hand, linear regression 

exhibits poor generalisation, as seen by its 

extremely large standard deviation and severely 

negative mean R
2
.  This image demonstrates how 

the resilience and reduced variance of tree-based 

ensemble models, such as XGBoost and Gradient 

Boosting, make them more appropriate for this 

nonlinear dataset. 
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Figure 19. Feature Importance – Tuned Random 

Forest 
 

The relative significance of each input feature 

in the XGBoost model is shown in this horizontal 

bar chart.  The most significant predictor of the 

output of the solar still is MSS_Tw (water 

temperature in the basin), which is followed by 

solar intensity (MSS_I), sponge outlet 

temperature (MSS_Tlofa), and sponge inlet 

temperature (MSS_Tci).  Since evaporation and, 

therefore, distillate output is directly impacted by 

water temperature, MSS_Tw's supremacy is 

consistent with thermal principles.  This image is 

essential for directing engineering design since it 

shows where enhancements or sensor locations 

may maximise performance optimisation and 

forecast accuracy. 
 

Table 2. Fold Cross-Validation – MSE (Mean & Std) 
 

Model Mean MSE Std Dev Rank 

XGBoost 

(Tuned) 
8472 6959 1st (Best) 

SVR 

(Tuned) 
8669 6854 2nd 

Gradient 

Boosting 
10525 8477 3rd 

Random 

Forest 
10185 6388 4th 

Decision 

Tree (Tuned) 
11193 8932 5th 

Linear 

Regression 
44706 57774 6th 

 

Evaluating multiple models ensures that the 

most reliable one for predicting distilled water 

output under different environmental or design 

conditions. Cross-validation (5-fold) shows the 

models generalization beyond the training set, 

which is difficult for solar stills being tested under 

variable solar radiation and temperature profiles. 

 

 

 

 
Table 3. Single train-test split (R

2
 and MSE) 

 

Model MSE R² Rank 

Decision Tree 

(Tuned) 
1335 0.890 1st (Best) 

XGBoost 

(Tuned) 
1760 0.855 2nd 

Linear 

Regression 
1843 0.848 3rd 

SVR (Tuned) 2123 0.825 4th 

Gradient 

Boosting 
2665 0.781 5th 

Random 

Forest 
3668 0.698 6th 

 

By analyzing both single split and cross-

validation results as compared in table 3 & 4, the 

XGBoost model appears to be the most suitable 

for predicting solar still output. It shows a strong 

performance with a relatively low Mean Squared 

Error (MSE) of 8472.19 in cross-validation and 

the lowest standard deviation (6959.53) among all 

models, indicating consistent and reliable 

predictions as shown in table 2. 

 
Table 4. 5-Fold Cross-Validation – R2 score (Mean) 

 

Model Mean R² Std Dev Rank 

XGBoost 

(Tuned) 
-10.19 8.59 

1st (Least 

negative) 

Decision Tree 

(Tuned) 
-12.84 10.39 2nd 

Gradient 

Boosting 
-13.45 11.34 3rd 

Random 

Forest 
-14.85 11.03 4th 

SVR (Tuned) -19.61 23.33 5th 

Linear 

Regression 
-116.55 198.55 6th 

 

Additionally, in the single train-test split, 

XGBoost achieved a high R² score of 0.855, 

highlighting its accuracy in capturing the 

underlying patterns in the data. In real-world 

applications, this approach reduces the 

dependency on time-consuming physical 

experiments. Once trained and validated, the 

model can efficiently predict solar still 

performance under different conditions, thereby 

saving significant time and operational costs. 

 

4. Conclusion 

Experimental evaluations of CSS and MSS's 

performance were conducted in a range of 

ambient temperature and sun radiation levels. The 

experiment evaluated both systems' distillate 
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production, evaporation efficiency, and thermal 

behaviour over time. The experimental findings 

lead to the following deductions: 

 The system's thermal performance was 

directly impacted by the solar radiation 

intensity, which peaked at 980 W/m² at 

around 13:00 and then steadily declined 

to almost 0 W/m² by 18:00.   

 Although the sponges in MSS improved 

heat retention, the basin water 

temperature (Tw) in CSS was greater than 

that of MSS until 15:00. After that, MSS 

overtook CSS. For MSS and CSS, the 

highest Tw measured was 54.5°C and 

56.1°C, respectively.  

 A similar pattern was seen in the inner 

glass temperature (Tci), with CSS 

reaching 54.3°C and MSS 52.8°C. 

However, MSS shown improved long-

term heat retention due to the sponges.  

 Later in the experiment, the temperature 

dropped more gradually because the 

sponges in MSS were better at absorbing 

and storing heat. Due to increased 

evaporation from the sponge surface, the 

maximum measured sponge surface 

temperature (Tlofa) at 15:00 was 50.3°C, 

which was somewhat lower than Tw.  

 With a maximum hourly output of 325 ml 

for MSS and 312 ml for CSS, distillate 

yield was greatly increased in MSS. With 

a cumulative output of 2.316 L for MSS 

and 1.99 L for CSS, the total 

improvement was 16.38%.  

 Sponge storage and utilisation of stored 

heat energy is demonstrated by the 

18.31% yield enhancement during the day 

(≤18 hours) and the 9.78% yield 

improvement during the night (>18 

hours). 

 Due to the capillary rise-assisted 

evaporation from the sponges in MSS, the 

overall system efficiency rose by 16.39% 

to 36.86% and 31.67% for CSS. 

 The XGBoost (Tuned) model gave the 

best performance with an R² score of 

0.9693 and standard deviation of 0.0217, 

showing excellent accuracy and 

consistency. 

 The Gradient Boosting model achieved an 

R² of 0.9517 with standard deviation of 

0.0245, performing close to XGBoost. 

 The Random Forest model resulted in an 

R² of 0.9359 and a slightly higher 

standard deviation of 0.0368, indicating 

moderate consistency. 

 The Support Vector Regressor (SVR) 

gave an R² of 0.9212 with standard 

deviation of 0.0341, maintaining stable 

but slightly lower predictive power. 

 The Linear Regression model performed 

the worst with an R² score of -0.1804 and 

standard deviation of 0.1206, failing to 

model nonlinear behavior effectively.  
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