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We utilized the most applicable artificial intelligence systems for the challenge of
cooling load (CL) in housing units. We fine-tuned them in 2 stages using an
innovative evolutionary algorithm called Biogeography-Based Optimization (BBO).
The abovementioned procedure is then applied to establish a connection between the
system's input and output characteristics. The vital output of the system was the
measure of CL. In contrast, the input attributes included surface area, relative
compactness, roof area, wall area, glazing area distribution, overall height, and
orientation. Two well-known statistical indices, the correlation coefficient (R?) and
root mean squared error (RMSE) were used to assess the BBO approach's expected
outcome for data sets. According to the findings of the BBO network's initial stage,
the R? and RMSE amounts for the training and testing data sets were 0.965281 and
0.06773, respectively. Per the R? and RMSE, the testing data set, and suggested
BBO-MLP forecasting network models acquired amounts of 0.96007 and 0.06946,
respectively. In the second stage, data are collected for ten distinct alpha values.
These data suggest that an alpha of 1.1 provides excellent efficiency. In addition, the
amounts of R? and RMSE for the testing data set is (0.95113 and 0.07667) and
(0.95574 and 0.07628) for the training data set, respectively.

1. Introduction

Today's world has witnessed the insatiable desire
of emerging countries to achieve developed nation
status. In attaining such, many nations overlook
the need for renewable energy and lowering
carbon emissions [1]. The government has turned
to  extensive  building  restorations  and
replacements to accommodate the population's
necessities, such as housing. Research has shown
that faulty housing structures and
designs resulting from rushed planning account
for 40 percent of carbon dioxide emissions [2].
Inadequate time and space restrictions to complete
the specified construction project resulted in an
unsuitable building design, propelling India to
fourth place in CO2 emissions. [GHG statistics
from UNFCCC (United Nations Framework
Convention on Climate Change)]. Therefore, it is
now even more crucial to take action to limit this
quantity. This research aims to address this issue
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by leveraging the buildings' energy performance
(EBP) to reduce their energy usage. This topic has
garnered much scholarly attention in recent years
[3]. Efforts to enhance the EPB might alleviate
this dire circumstance.

Therefore, estimating cooling load based on
fundamental ~ characteristics  of  buildings,
including wall area, surface area, and overall
height, might assist in determining EPB [4]. Such
techniques are prevalent even in HVAC projects
[5]. Estimating cooling demand may also aid in
reducing building power use and lowering CO2
emissions [6, 7]. Research has also shown a clear
association between energy usage and CO2
emissions in Nigeria [8], demonstrating that the
proposed assumption applies to other countries
besides Nigeria. The researchers [9] evaluated the
energy-saving potential and discovered that
building occupancy and design are the two most
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essential aspects strongly associated with EPB.
Gul and Patidar's [10] research on energy usage
verifies Chung and Rhee's [9] research study,
which highlights that these guidelines are relevant
not just in Korea but in many other parts of the
globe, emphasizing the importance of building
design in conserving energy. Thus, we can infer
that forecasting cooling load will also enable us to
define the structure of a refurbished building.
Still, it would also allow us to lower the building's
energy usage based on its occupancy pattern and
create intelligent buildings [11-14]. Figure 1
highlights the necessity of forecasting the cooling
demand in buildings.
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Figure 1. Importance of the forecast of heating and
cooling loads in green buildings

Scholars such as Yang et al. [15], Li and Li [16],
Deb et al. [17], and Malkawi et al. [18] have
become increasingly interested in estimating
power usage in building structures. According to
Lechtenbohmer and Schiirer, housing areas have a
substantial influence on natural resources [19].
Consequently, these structures prepare facilities
for human needs, and their numerous
contributions to the community cannot be ignored.
Moreover, some scholars argue that construction
has harmed the environment over the past few
decades [16]. Metals, hydrocarbons, and electrical
energy form the basis of the modern world's
industrial process. These are interconnected; one
is controllable if sufficient energy is available to
generate the others. World energy usage in 2013
was around 12,928.4 million tonnes [20]. In 2008,
the world energy usage was around 474 Exajoules
(EJ), most of which was provided by fossil fuels.
In addition, global power usage increased by 70
percent from 1990 to 2008 [20]. Building
accounts for around 40 percent of global power
consumption and plays a significant role in the
energy industry, accounting for approximately 30
percent of global CO2 emissions.

Furthermore, Madadnia et al. [21] and Ahmad et
al. [22] reported that the building's HVAC system
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meets its cooling demands. Sensors and
automated machines are often used to calculate
the cooling load. However, modern commercial
building management systems (BMSs) may not
always accurately estimate the cooling demand of
a structure. Therefore, predicting cooling load and
energy usage is challenging due to the numerous
interdependent elements involved, such as the
wide range of appliances and modifications to
buildings to meet the growing population's needs
[23, 24]. The need for an excellent alternative to
load prediction remains, and more reliable
prediction models must be developed to assist
engineers and scientists in assessing sustainability
challenges throughout the building construction
stage. Tsanas and Xifara's writings include
references to HVAC regulations [25]. Their
technique used simulations that created twelve
distinct building forms. The HVAC system serves
as the stimulus for managing the indoor climate.
Consequently, expecting a cooling load saves
energy. Numerous hours have been devoted to
anticipating the building cooling demands.
Various machine learning approaches have been
effectively used to predict the cooling of
buildings. Deb et al. [17] have implemented an
artificial neural network.

In instances when even non-linear hypotheses fail
to learn, ANN is commonly employed. Khayatian
et al. [26] also predicted energy performance
using the ANN. Yang et al. [15] have used LS-
SVM (Least Squares Support Vector Machine)
and evaluated SVM against ANN, which employs
a backpropagation technique to learn, by utilizing
LS-SVM. Yang et al. [15] demonstrated that SVM
outperforms ANN in terms of decreasing R-
squared and MAPE. Yu et al. have employed
hierarchical multi-class SVDD and attained high
precision in their study [27]. Roy et al. [28] also
experimented with an extreme learning machine, a
multivariate adaptive regression spline, and a
hybrid approach combining ELM and MARS
prediction models. Their outcomes were quite
remarkable.

This research proposes four models that forecast
the cooling demand of residential structures as a
response to the pressing need for energy
conservation. The forecast of cooling demand is
advantageous in several respects; for instance, it
enables designers to make informed decisions
about a building's sustainability. Forecasting
approaches for loads may also be employed to
create buildings with higher energy efficiency.


https://www.aisesjournal.com/article-1-36-en.html

[ Downloaded from www.ai sesjournal.com on 2026-02-04 ]

Ravinder Kumar and H. Pandurang Jagtap

2. Established database

Tsanas and Xifara [25] utilized the computer
program Ecotect [29] to model the CL of twelve
residential structures. Concerning 12 researched
building structures (with 18 components in a
77175 m3 volume), four orientations, four
glazing regions (0 percent, 10 percent, 25 percent,
and 40 percent of the floor area), and five
allocation situations, namely uniform (25 percent
glazing on each side), South (55 percent on the
South and 15 percent on each other side), North
(55 percent on the North and 15 percent on each
other side), and East (55 percent on the East and
15 percent on each other side) were examined
(Figures 2). The variations of the utilized database
with the cooling load are shown in Figure 3.
Similar research, such as [25, 30], provides
further information regarding the dataset utilized.
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Figure 3: Schematic view of variations of the
utilized database with the cooling load

3. Methodology

The general methodology used to achieve the goal
of this research (i.e., the subsequent actions) is as
follows:

a) Data preparation involves arbitrarily dividing
the input database into testing and training
sets. Eighty percent of it is utilized to feed the
approaches that determine the link between
the CL and its relevant components, as is
well-established.

b) Using the MATLAB 2014 programming
language, the optimal structure of the MLP
neural network is determined, and it is
provided quantitatively to the suggested BBO
algorithm to identify the optimal solution to
the issue. The output is generated through a
trial-and-error procedure to determine the
optimal variables of the model. The
optimization procedure is then performed, and
the output is acquired.

c) Utilizing the other 20% of the data, the
efficiency failure of the approaches is
evaluated by employing two widely applied
error criteria: root mean square error (RMSE)
and mean absolute error (MAE). In addition,
the determination coefficient measures the
correlation of the findings (R?).

3.1 Multilayer perceptron:

MLP neural networks are composed of layered
units [31]. Each layer consists of nodes, and each
node is linked to every node in the layer below it.
At least three layers comprise each MLP,
including an output layer, one or more hidden
layers, and an input layer. Inputs are distributed to
successive levels via the input layer. Input nodes
are equipped with linear activation functions and
lack limits. In addition to weights, every output
node and hidden node has limitations. The secret

64

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 61-79

unit nodes' activation functions are non-linear, but
the outputs' activation functions are linear.
Consequently, each signal entering an anode in a
successive layer multiplies the original input by a
weight and applies a limit before passing through
a linear or non-linear activation function (in
hidden units). Figure 4 illustrates a typical three-
layer network of this kind. In this study, only
three-layer MLPs will be investigated, as it has
been demonstrated that such networks can
simulate any continuous function [32-34]. All
inputs and outputs are directly linked to the real
three-layer MLP [31].

The training data are a collection of NV
training patterns of the form (xp, tp), where P is
the pattern index. XP represents the Pth training
pattern's N-dimensional input vector, and YP
represents the trained network's M-dimensional
output vector for the P™ training pattern. The limit
on output and hidden units is addressed to
facilitate identification and evaluation by
assigning the value 1 to the completed vector
component Xp (N+1), which is denoted by the
symbol N+1. The installations of the input and
output units are linear. netP (j), the input to the Jth
hidden unit, is stated [31] as follows:
net,(j) = LRt Wi G.B)X,(k)  1<j<N, (1)
With the output activation for the Pth training
pattern, Op (j), is stated as follows:

Op (]) = f(netp (])) (2)

The sigmoid function is often selected as the non-
linear activation:

1
f (net, ) = T 3)

In equations (7) and (8), the N input units are
denoted by the index K, whereas Wy, (J,K)
represents the weight linking the Kth input to the
Jth hidden unit.
The MLP's performance is assessed using the
MSE formula:

E = %2?721 Ep = % ng 2911[%(1') - yp(i)]z 4)
Where:

M
By= ) 6@ —30F ®)
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Ep is the intended output for the Pth pattern, and
tp relates to the error in the Pth pattern. This also
enables the napping error for the ith output unit to
be calculated as follows:

1 M
B=g ). [6®-%0F (6)
The ith output is represented as:

YD) = TN Wi (i, k) Xp (k) + 230 Woi(0,)) 0, (7)

In equation 13, W,;(i, k) indicates the weight
from input units to output units and W,; (i, j) The
weight from hidden units to output units.
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Figure 4: A multilayer perceptron

3.2. Biogeography-based
(BBO):

optimization

Whenever an environment is densely inhabited,
several species will likely depart to surrounding
environments, whereas few species will
immigrate due to the unavailability of additional
resources for migratory species. Similarly,
whenever an environment is poorly inhabited, it
contains few species. It is, therefore, eligible to
secure many immigrants, but few species are
inclined to depart due to their low numbers.
Whether immigrants can thrive following
migration is a separate concern; however, the new
species' immigration may increase the biological
richness of the environment and make it more
suitable for existing species. In the 1990s, [35]
this concept of the ecosystem as an optimizing
system was first proposed. Biogeographers argue
that a biogeography concept centered on
maximizing the environment's state for biological
activity is preferable to one based on homeostasis
[36]. In reality, several instances of optimal
solutions to biogeographical phenomena, such as
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the Krakatoa island phenomenon [37] and the
Amazon rainforest [36], corroborate this point of
view.

With an alternative perspective, biogeography is
sometimes seen as a procedure that maintains
ecological balance. Throughout time, the
opposing pressures of emigration and immigration
culminate in an equilibrium of species' level
diversity in a diverse habitat. Specifically,
equilibrium is the point where the emigration and
immigration curves intersect. In the 1960s, the
equilibrium perspective in biogeography initially
gained popularity as researchers challenged the
equilibrium approach while increasingly adopting
the optimality perspective.

Although biogeographical phenomena have been
contested as an optimization procedure, suitable
responses have been provided to address these
issues. It must be emphasized that optimization
and equilibrium are two separate viewpoints on
the same biogeographic phenomena; yet, this
discussion opens up several new avenues for
study in BBO.

As its name suggests, BBO 1is a unique
optimization technique built upon biogeography.
The following section provides an in-depth
description of the BBO methodology. Similar to
how biology's mathematics prompted the creation
of other biology-based optimization techniques,
we can incorporate biogeographic elements into
BBO to enhance its optimization efficiency.
Among these are the impact of geographical
location on migration rates, non-linear migration
curves to best-fit nature (as will be presented in
the paper), species swarms, prey/ predator
interactions, the impact of differing species
mobilities on directional momentum throughout
the migration, rates ofn migration, and the impact
of ecosystems area and isolation on migration
rates.

Biogeography-based optimization: BBO

This section outlines the biogeography-based
optimization method in broad terms. Assume we
have a problem requiring improvement and a
variety of potential solutions. A comparable
environment with a high habitat suitability index
(HSI)is an effective solution. According to
biogeography, this refers to a suitable
geographical region for biological organisms. HSI
is an indicator of the quality of the solution
provided by the environment in an optimization
problem, also known as fitness. A wrong solution
is comparable to a low HSI environment. Thus,
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the variety of species a solution describes depends
on its HSI. Solutions with a large HSI are more
willing to exchange their characteristics with
other solutions.

In contrast, solutions with a lower HSI are more
inclined to accept features shared by other
solutions. This innovative method for solving
broad optimization issues is known as BBO.
Like other evolutionary approaches, BBO consists
of two key steps: information exchange (which is
performed in BBO through migration) and
mutation. Migration is a probabilistic operation
that enhances a habitat (Hi). We leverage the
migration rates of every environment based on the
probability exchange characteristics across
habitats. For each habitat (Hi), we utilize its
immigration rate. A; to determine probabilistically
whether one should immigrate or not. If
immigration is chosen, the emigrating habitat Hj
is chosen probabilistically depending on the
emigration rate j.

H(SIV) « H;(SIV) (8)

An SIV is a suitability index parameter that
indicates the livability of an island in
biogeography. An SIV is a solution characteristic
in BBO, analogous to a gene in GAs. The
mutation is a probabilistic agent that arbitrarily
adjusts the SIV of the habitat according to the
prior probability of the environment's species
count. The objective of mutation is typically to
promote genetic diversity within a population.
Mutation offers solutions with a poor HSI the
opportunity to improve their performance. The
mutation may make solutions with a high HSI
even better than they currently are.

Two years later, [38] proposes modifying the
migration operator for the case Hi. Given that in
normal BBO, if Hi(SIV) is chosen to be
immigrated by  Hj(SIV), the  operator
Hi(SIV)=Hj(SIV) is applied. This could reduce
the search space, resulting in a locally optimal
solution. Ma suggests a unique operator that
combines the characteristics of immigrants and
immigrant operators. This method enables BBO to
preserve population variety and prevent local
optima. In this strategy, a € [0,1] is used to adjust
the weights of the current candidate and
immigration solutions. In [38], the authors
investigate the setting of a experiment. The test
results conclude that a proper value of a, say
a = 0.5, performs better than a large or a small
value of a, say @« = 0and 0.8, respectively. In
studies [39, 40] and [38], the migration operator is
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designed to involve only one other solution,
meaning that each candidate learns from a single
peer during the migration process. To enhance
this learning mechanism, Xiong [41] introduced a
polyphyletic migration operator in 2004, which
allows a candidate to learn from two different
solutions simultaneously during each migration
step. The corresponding pseudocode is presented
in Algorithm 8, where ¢ € [0, 1] and i, j, I, s € [1,
N]. Here, N represents the population size, and D
denotes the dimensionality of the problem.
Following the migration step, Xiong [41] also
incorporated an Orthogonal Learning Strategy
(OLS), enabling the BBO algorithm to explore
more promising solutions in the vicinity of current
candidates.

Comparing other evolutionary approaches to
BBO

BBO is a swarm-based, universal optimization
technique that shares characteristics with other
EAs, such as particle swarm optimization (PSO),
evolutionary strategy (ES), differential evolution
(DE), and ant colony optimization (ACO). For
instance, they all use the same information-
sharing operators. This makes BBO suitable for
several issues when GAs and PSOs are employed.
Nevertheless, BBO has characteristics that
distinguish it from other EAs. Firstly, we observe
that ES and GAs create offspring through
crossovers; their solutions are lost at the end of
each iteration, whereas the solutions of BBO are
not lost but rather changed via migration.
Secondly, we observe that ACO generates a new
set of solutions for each iteration, whereas BBO
maintains the same solution set across iterations.
In contrast to PSO and DE, BBO solutions change
immediately via migration, whereas PSO and DE
change depending on the distinctions between
these solutions. The benefits and drawbacks of
BBO relative to other EAs require further
research.

4. Results and discussion

This work evaluates the application of a meta-
heuristic method, called BBO, in the advanced
calculation of cooling demand in residential
buildings. In this study, the process contributes to
the solution by improving the CL estimation
variables of an ANN by monitoring ambient
factors. This section discusses the estimation
outcomes of the MLP neural network instrument
and the BBO-MLP ensembles. The suggested
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BBO model's output has been displayed in tables
and figures. For research, we have embraced the
R and MATLAB programming languages.
Conventional assessments of error measurements,
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like R? and RMSE were used to evaluate the
model's proposed performance. The cooling load
efficiency of the proposed method is illustrated in
Tables 1-3 and Figures 5-10.

Table 1. Network result variations based on the number in each hidden layer

The number N " i Scori
oefa zﬁugf(?;eﬁl etwork results coring Total score RANK
layer
RMSE, RMSE .in RMSE, MSE, a1 RMSE i RMSE

1 1.155 1.206 1.170 5 5 5 15 6
2 0.702 0.694 0.700 8 8 8 24 3
3 0.686 0.673 0.682 9 9 9 27 2
4 0.732 0.745 0.736 7 7 7 21 4
5 1.673 1.688 1.677 4 4 4 12 7
6 2.413 2.371 2.400 2 2 2 6 9
7 0.599 0.609 0.602 10 10 10 30 1
8 0.800 0.799 0.800 6 6 6 18 5
9 1.829 1.793 1.818 3 9 8
10 3.050 2917 3.011 1 1 1 3 10

4.1. Accuracy Indicators

To assess the forecasted CL, two statistical
indices, namely, the coefficient of determination
(R?), and root mean square error (RMSE), were
utilized to expand a color intensity ranking. It is
worth noting that these evaluation criteria have
been widely utilized in previous studies [42-44].
The formulations for RMSE and R? are presented
in Equations (1) and (2), respectively.

2

9]
RMSE = \/L]J- Z[(Siobserved - Sipredlc(ed )] (16)
i=1

(Si 'Si )2

predicted observed

)3
R2=1-- 17)
)3

2
-S observed )

observed

In the above equations, S ghservea @Nd Si anticipate
represent CL's real and expected values for the
energy-efficient structure. U stands for the
number and Sppeerveq The mean of CL's real
values.  Machine learning models  were
constructed using an enhanced dataset in the
Weka software environment. The outcomes of this
procedure are provided in the following section.

67

4.2. Incorporated Optimizers and FIS

The BBO was presented with the equation of the
calculated MLP as the primary challenge. Then,
the cost function was calculated as the RMSE
between the expected and actual CLs of the
training specimens. The cost function is
determined after each cycle to assess the
simulation's validity. The BBO-MLP approach
was then subjected to a sensitivity analysis
dependent on the overall population. It is among
the most significant variables of hybrid
algorithms, as is pretty apparent. The networks are
evaluated with ten swarm sizes ranging from 50 to
500 (50, 100, 150, 200, 250, 300, 350, 400, 450,
and 500). Every network was constructed over
1000 cycles to reduce the error. As mentioned
above, the approach yields ten convergence
curves, as represented in Figure 5 for the BBO-
MLP ensemble.
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Figure 5: Finding the best-fit structure for
BBOMLP 50-500

The best convergence curves (the lowest RMSE at
the end of the procedure) are achieved for the
swarm sizes of 400 for the BBO-MLP ensemble.
Figure 6 shows the obtained RMSE wvalues
(3.509617617, 3.315078293, and 3.187975741)
along with the alpha values (0.5, 0.6, 0.7, 0.8, 0.9,
1.0, 1.1, 1.2, 1.3, and 1.4) for a population size of
400. The lowest MSE shows the most accurate
result and the best alpha value. According to this
chart, the lowest MSE is obtained for o = 1.1. As
shown in Figure 6, the highest MSE is obtained
for alpha=0.8, indicating that this value of alpha
yields less accurate results in predicting CL.

MSE

Figure 6: Best fit proposed 400 structures with
various BBO alpha between 0.5 and 1.4

This section evaluates the precision of the created
approaches by contrasting the expected and real
CL amounts. Two error criteria, MAE and RMSE,
were used to determine the performance error for
both testing and training sets. The results' fitness
in the testing and training stages shows the
learning capacity and generalization ability,
respectively. Concerning the testing stage, Figures
7 and 8 provide a graphical representation of the

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 61-79

errors (the difference between the calculated and
estimated CLs) and the correlation between the
measured and expected CLs for each approach.
There's no variance in the overall training
performance. In other words, the greater the
generalization  power, the  greater the
comprehension in the training period. By taking
the R%and the RMSE results from Figures 7 and 8,
as shown in Table 2, can be obtained, which
represent the combination of all regressions and
rank the optimal size of the population. In
addition, per Table 2, the R? amounts of 0.96007
and 0.9652 for testing and training, respectively,
indicated that the population size of 400 was the
most accurate.
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Figure 7: The precision of training set performance
of BBOMLP in the first optimization phase after
changing the population size between 50 and 500
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Figure 8: The precision of testing set performance
of BBOMLP in the first optimization phase, after
changing the population size between 50 and 500
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Table 2. The network outcomes for the BBOMLP having different swarm sizes

[ Downloaded from www.ai sesjournal.com on 2026-02-04 ]

Swam Training dataset Testing dataset Scoring
. Total Score Rank
S1ze
RMSE R RMSE R? Training Testing

50 0.07573 095639  0.07564 0.95246 1 1 1 1 4 10

100 0.07186  0.96083  0.07262 0.95628 5 5 7 7 24 5

150 0.0689 096405  0.07011 0.95931 9 9 9 9 36 2

200 0.07179  0.9609 0.07368 0.95495 6 6 4 4 20 6

250 0.072 096067  0.07322 0.95553 4 4 5 5 18 7

300 0.0731 095943  0.07444 0.954 3 3 3 3 12 8

350 0.07082  0.96197  0.07214 0.95686 8 8 8 8 32 3

400 0.06773  0.96528  0.06946 0.96007 10 10 10 10 40 1

450 0.07367  0.95878  0.07445 0.95399 2 2 2 2 8 9

500 0.07116  0.9616 0.07279 0.95606 7 7 6 6 26 4
According to R? The value (i.e., the smallest ' — OBOULP-Trath Dote S0 —a
RMSE at the end of the procedure) is acquired, 8] | it = o000 o um » K
indicating that a population size of 400 yields the ol &4
highest accuracy outcome. Figures 9 and 10 f %2
illustrate the visual perspective of R? for testing s 2 : e ;"-" =1
and training stages for population size 400 and the o8| — W
alpha (0.5, 0.6, 0.7,0.8,0.9, 0.1, 1.1, 1.2, 1.3, and E Ty f o
1.4). As previously highlighted, Table 3 can be 3 .: u 5,

derived utilizing RMSE and R? amounts of

Figures 9 and 10, since that is the sum of all P
regressions, and according to its ranking, the _" o8
optimum alpha value is given. According to o1 ’*,ig «
Figures 9 and 10, and Table 3, the maximum R? is Ly

found for alpha=1.2 (0.95574 and 0.95113 (for T z o3 o4 a5 e o7
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Table 3. The network outcomes for the BBOMLP have a different alpha value

Swam Training dataset Testing dataset Scoring

. Total Score Rank

size
RMSE R’ RMSE R’ Training Testing

0.5 0.0756 0.95655 0.07501 0.95328 3 3 3 3 12 3
0.6 0.07325  0.95927 0.07308 0.9557 4 4 8 8 24 6
0.7 0.07307  0.95946 0.07444 0.954 6 6 4 4 20 5
0.8 0.07263  0.95997 0.07444 0.954 8 8 4 4 24 6
0.9 0.07174  0.96095 0.07335 0.95536 9 9 7 7 32 8

1 0.07268  0.95991 0.07189 0.95717 7 7 10 10 34 9
1.1 0.07093  0.96185 0.07273 0.95614 10 10 9 9 38 10
1.2 0.07628  0.95574 0.07667 0.95113 2 2 1 1 6 1
1.3 0.07746  0.95433 0.07638 0.9515 1 1 6 1
1.4 0.07322 0.9593 0.07444 0.954 5 5 4 4 18 4

5. Discussion

It is evident from the preceding analysis and
interpretation that numerous computations are
required to assess the building power system,
ranging from subsystem to building scales, and
even regional and national scales. Each model has
its own merits in specific usage scenarios. The
engineering model has significant variances. The
development of this model may involve several
factors. It may be a very complex and exhaustive
model, useful for precise computations.

On the contrary, by implementing proper
simplification techniques, the model could be
lightweight and simple to create while retaining
its accuracy. Due to its high complexity and the
lack of input information, implementing this
comprehensive engineering model in reality is
challenging, which is a well-acknowledged
disadvantage. The statistical model is reasonably
straightforward, but its shortcomings are readily
apparent: inaccuracy and rigidity. ANNs are adept
at addressing non-linear issues, making them very
useful ~ for  estimating  building  energy
consumption. It can produce accurate predictions
if model selection and parameter setup are
correctly completed. This approach has the
drawbacks of requiring enough previous
performance data and being quite sophisticated.
The estimation of building energy usage has
garnered significant interest from the academic
community, yet many open, unresolved research
topics remain. The following topics may be the
subject of future study.

76

» Introduce novel prediction models that are more
effective, stable, accurate, and efficient.

» Improve aspects of energy usage at the system
level, evaluate possible models, and select the
optimal model for each component.

* Apply energy forecasting to the Building Energy
Management System (BEMS) for mutual
advantage.

» Examine artificial intelligence models in various
applications and improve prediction parameters.

» Evaluate each variable's impact on empirical
models and balance the model performance and
practicality in reality.

» Provide databases and gather accurate and
adequate historical usage information from a
multitude of situations for use in future studies.

This study demonstrated the effective use of
an artificial neural network (ANN) model to
address a critical energy-related challenge. Given
the promising results, the proposed approach has
the potential to be developed into a user-friendly
platform, such as a graphical user interface (GUI),
for early-stage prediction of cooling loads based
on specific input parameters. Such a tool could be
particularly valuable for engineers and architects
aiming to optimize residential building designs,
especially in terms of geometry and energy
performance.

While several previous studies have
successfully applied machine learning techniques
to predict thermal loads in various building types,
such as office, commercial, and industrial
structures [45], further refinements could enhance
the present method. First, comparing results based
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on normalized data would help determine which
data formats are most suitable for these
simulations. Second, selecting an optimal number
of input variables can simplify the model,
reducing complexity and the number of
parameters that require calibration. Additionally,
linking HL with CL transforms the task into a
multi-target prediction problem, which may
increase complexity and should be weighed
against its benefits.

Future research could also explore applying
the model to a wider range of building types
within a single study to improve its
generalizability. Lastly, comparative studies are
recommended to identify the most effective
algorithms for integration with ANN or other
intelligent systems.

The forecasting model proposed in this paper
differed from previous studies in the analysis
phases. Previous studies usually included just one
phase of analysis. In this method, the analysis is
conducted in the first phase, as in the previous
work, and the optimal population size is selected.
This swarm size has the lowest RMSE value and
the most R? value and has the most accurate
prediction. However, this section is the main
difference between this work and the previous
ones. In the second phase, the best swarm size of
the first phase is examined. In this way, several
different values for the alpha parameter (discussed
in the previous section) have been considered, and
the value that has the lowest RMS and the highest
R? has been extracted.

5. Conclusions

Given the growing significance of conserving
energy in modern human civilization, the primary
objective of this study was to develop a unique
hybrid approach for modeling the residential
buildings' CL. The suggested approach imitates
the herding behavior of BBO to enhance the
neural network's efficiency. To do this, the BBO
was fabricated with an MLP to produce the BBO-
MLP ensemble. The CL was then predicted by
considering eight relevant parameters. According
to the estimated errors and the correlation of the
findings, the BBO is effective at correcting the
MLP's neural biases and weights. Based on the
outcomes of the two presented statistical indices,
namely. R? and RMSE, two statistical indices,
were applied. The findings demonstrated that the
proposed model (BBO-MLP) yields satisfactory
estimation results in predicting CL in residential
buildings. The values of R? in the BBO-MLP
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model, which was obtained for a population size
of 400, yielding 0.96007 and 0.96528 for the
testing and training data sets, respectively.
Additionally, in the case of RMSE, values of
0.06773 and 0.06943 were obtained from the
training and testing datasets, respectively. Finally,
by changing the alpha parameter's value for a
population size of 400, the best accuracy results
were obtained for alpha = 1.2. These results show
the value of (0.95547 and 0.95113) for R? and
(0.07628 and 0.07667) for the RMSE of the
training and testing datasets, respectively.
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