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 The accurate energy consumption prediction for OPEC (Organization of the Petroleum 

Exporting Countries) member states is vital for strategic planning and policy-making 

in the global energy market. This study leverages advanced machine learning 

techniques to forecast energy consumption, utilizing historical data from the U.S. 

Energy Information Administration (EIA). We applied a variety of machine learning 

models, including Simple Linear Regression, Gaussian Processes, Multilayer 

Perceptron (MLP), SMOreg, IBK, Kstar, LWL, Random Subspace, Random 

Committee, and Random Forest, to the task of predicting energy consumption. The 

performance of these models was evaluated based on metrics such as R-squared (R²), 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Relative Absolute 

Error (RAE), and Root Relative Squared Error (RRSE). Our results demonstrated that 

the Random Committee model achieved the highest accuracy in both training (R² = 

0.9999, MAE = 0.7411, RMSE = 1.0509, RAE = 1.2199%, RRSE = 1.2399%) and 

testing phases (R² = 0.9525, MAE = 11.4795, RMSE = 30.6585, RAE = 17.9586%, 

RRSE = 31.6700%), highlighting its robustness and predictive power. In contrast, the 

LWL model showed the poorest performance, with significant errors in both phases. 

The study also highlights the strengths and limitations of each model, with a focus on 

the applicability of these findings for policymakers and energy analysts. The insights 

gained from this research underscore the potential of machine learning to enhance 

energy consumption forecasting, providing a foundation for future studies to build 

upon. Directions for future research include incorporating additional socio-economic 

and environmental variables, real-time data, and more advanced machine learning 

techniques to improve prediction accuracy and reliability further. 
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1. Introduction: 

The Organization of the Petroleum Exporting 

Countries (OPEC) has wielded considerable 

influence over global energy markets since its 

establishment in 1960. Comprising 13 member 

countries, including major oil-producing nations 

like Saudi Arabia, Iran, and Venezuela, OPEC's 

primary objective is coordinating petroleum 

policies to ensure market stability and fair prices 

for producers and consumers [1]. Predicting energy 

consumption for OPEC countries is paramount for 

several reasons [2]. Firstly, these nations are home 

to vast crude oil and natural gas reserves, which 

serve as critical economic assets. Accurate 

forecasts of energy consumption are essential for 

managing these resources sustainably and ensuring 

long-term economic viability [3]. Furthermore, 

OPEC's decisions regarding oil production quotas 

and pricing directly influence global oil markets. 

By forecasting energy consumption, OPEC can 

anticipate future demand trends, enabling informed 

decisions to stabilize markets and prevent supply-

demand imbalances. Moreover, OPEC countries' 

energy consumption predictions inform 

policymaking [2]. These forecasts guide energy 

efficiency, infrastructure development, and 

environmental sustainability initiatives, facilitating 

effective policy formulation to meet future energy 
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needs [4]. Additionally, accurate predictions of 

energy consumption support economic planning by 

governments and businesses in OPEC nations. By 

anticipating energy demands, stakeholders can 

plan investments, allocate resources, and devise 

strategies to foster economic growth and ensure 

energy security [5]. Predicting energy consumption 

for OPEC countries is crucial for maintaining 

energy market stability, informing policy decisions, 

and promoting sustainable economic development 

[6]. This paper explores the significance of energy 

consumption prediction and proposes a machine 

learning-based approach to address this critical 

need. 

Machine learning, a field within artificial 

intelligence, has become increasingly 

indispensable in analyzing complex datasets and 

making accurate predictions across diverse 

domains [7]. In energy consumption analysis, 

machine learning offers unparalleled capabilities to 

extract valuable insights from vast data repositories 

and rapidly forecast future consumption patterns [8, 

9]. Traditional methods of energy consumption 

analysis often struggle to contend with the 

intricacies inherent in energy systems [10]. 

Economic indicators, population demographics, 

climate variations, and technological 

advancements contribute to the complexity of 

energy consumption patterns. Machine learning 

algorithms excel in handling such multifaceted 

data, allowing for the identification of subtle 

patterns and nonlinear relationships that traditional 

techniques may overlook [11]. A myriad of 

interconnected factors influence energy 

consumption. Machine learning algorithms are 

adept at analyzing these complex interactions and 

identifying hidden patterns, providing a more 

comprehensive understanding of energy 

consumption dynamics [12]. The advent of sensor 

technologies and smart meters has led to an 

explosion of data in the energy sector [13]. 

Machine learning algorithms are inherently 

scalable, enabling real-time analysis of large-scale 

datasets [14]. Machine learning models can make 

accurate predictions about future energy 

consumption trends by leveraging advanced 

algorithms such as neural networks, decision trees, 

and support vector machines. These models 

capture the nonlinear relationships between 

predictors and energy consumption, leading to 

more reliable forecasts [15]. Energy systems are 

subject to constant change due to various factors. 

Machine learning models can adapt to these 

changes by continuously updating their parameters 

based on new data, ensuring that energy 

consumption predictions remain relevant and up-

to-date [16, 17]. Machine learning empowers 

policymakers, energy analysts, and stakeholders by 

providing timely and accurate insights into energy 

consumption patterns. These insights inform 

critical decisions regarding resource allocation, 

infrastructure planning, and policy formulation. 

Machine learning is pivotal in energy consumption 

analysis, offering advanced analytical capabilities, 

scalability, prediction accuracy, adaptability, and 

decision support [8, 18]. Leveraging machine 

learning techniques has the potential to 

revolutionize our understanding and management 

of energy systems, paving the way for a more 

sustainable and efficient energy future. 

Previous research has explored the application of 

machine learning methods for predicting energy 

consumption across various contexts, including 

residential, commercial, industrial, and national 

levels. These studies have contributed valuable 

insights into the effectiveness of different machine 

learning techniques and the factors influencing 

energy consumption patterns. Several studies have 

focused on predicting residential energy 

consumption to inform energy efficiency initiatives 

and demand-side management strategies. For 

example, research by Burnett and Kiesling [19] 

applied machine learning algorithms such as 

decision trees and neural networks to household-

level data to forecast electricity usage accurately. 

Their findings highlighted the importance of 

weather conditions, household demographics, and 

appliance usage patterns in predicting residential 

energy consumption. Other studies have explored 

energy consumption prediction in commercial and 

industrial settings to optimize energy usage and 

reduce operational costs. For instance, Liu, et al. 

[20] developed predictive models using support 

vector machines and time-series analysis 

techniques to forecast energy demand in 

manufacturing plants. Their research demonstrated 

the potential of machine learning for identifying 

energy-saving opportunities and improving 

production efficiency in industrial facilities. At the 

national level, researchers have utilized machine 

learning approaches to analyze and predict energy 

consumption trends for entire countries or regions. 

For example, Khan, et al. [2] conducted a 

comprehensive study on energy consumption 

forecasting for OPEC countries using a 

combination of regression analysis and neural 

networks. Their analysis revealed the significance 

of socio-economic indicators, energy prices, and 

policy interventions in shaping energy demand 

dynamics across OPEC nations. While machine 
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learning holds promise for energy consumption 

prediction, several challenges and limitations 

persist. These include data quality issues, model 

interpretability concerns, and the need for domain 

expertise in feature selection and model tuning. 

Addressing these challenges is crucial for ensuring 

the reliability and practical utility of machine 

learning-based energy forecasting models. 

Previous studies have demonstrated the 

effectiveness of machine learning methods in 

predicting energy consumption across various 

scales and contexts. By leveraging advanced 

algorithms and integrating diverse datasets, 

researchers have gained valuable insights into the 

drivers of energy demand and the potential for 

optimizing energy usage in residential, commercial, 

industrial, and national settings. 

Previous studies on energy consumption prediction 

have employed a variety of methodologies, 

algorithms, and data sources to achieve accurate 

forecasts and gain insights into energy usage 

patterns. Many studies utilize time-series analysis 

techniques to model temporal patterns in energy 

consumption data [21, 22]. This involves analyzing 

historical consumption data to identify trends, 

seasonality, and other recurring patterns that can 

inform future predictions [23]. Regression models 

are commonly employed to capture the relationship 

between energy consumption and predictor 

variables such as temperature, population, 

economic indicators, and policy variables [24]. 

Linear regression, polynomial regression, and 

multiple regression are among the regression 

techniques used in energy consumption prediction 

studies [24]. Machine learning algorithms offer a 

powerful alternative to traditional statistical 

methods for energy consumption prediction [25]. 

Supervised learning algorithms such as decision 

trees, random forests, support vector machines, and 

neural networks have been widely used to build 

predictive models that capture complex patterns 

and nonlinear relationships in energy data. 

Decision tree algorithms are popular for their 

simplicity and interpretability. They partition the 

data into hierarchical decision nodes based on 

feature attributes, allowing an intuitive 

understanding of the decision-making process [26]. 

Neural network models, inspired by the human 

brain's structure, can learn intricate patterns from 

large datasets [27]. Multilayer perceptron (MLP), 

convolutional neural networks (CNN), and 

recurrent neural networks (RNN) are commonly 

used architectures for energy consumption 

prediction tasks. SVM algorithms are effective for 

both regression and classification tasks. They work 

by finding the optimal hyperplane that separates 

different classes or predicts continuous values with 

maximum margin from the data points. 

Longitudinal datasets containing historical energy 

consumption records are fundamental for training 

and evaluating predictive models [28]. These 

datasets may include information on electricity, 

natural gas, oil, and other energy sources, 

disaggregated by sector (residential, commercial, 

industrial) and geographical region. Weather 

variables such as temperature, humidity, solar 

radiation, and wind speed significantly impact 

energy demand. Meteorological data sources 

provide essential inputs for modeling weather-

dependent variations in energy consumption 

patterns. Demographic data, economic indicators, 

and socio-economic variables such as population 

size, GDP, urbanization rate, and household 

income levels are often included as predictors in 

energy consumption prediction models. These 

indicators help capture the underlying drivers of 

energy demand at both individual and aggregate 

levels. Methodologies such as time-series analysis, 

regression analysis, and machine learning, coupled 

with algorithms like decision trees, neural 

networks, and SVMs, have been employed in 

similar studies to predict energy consumption [29]. 

These studies leverage diverse data sources, 

including historical energy consumption data, 

meteorological data, and socio-economic 

indicators, to build predictive models that can 

provide valuable insights for energy planning, 

policy-making, and resource allocation. 

The primary aim of this study is to develop and 

evaluate various machine learning models for 

accurately predicting the energy consumption of 

OPEC member countries using historical data 

obtained from the U.S. Energy Information 

Administration (EIA). While numerous studies 

have examined energy forecasting, few have 

focused specifically on the collective group of 

OPEC nations, whose energy consumption trends 

are crucial due to their central role in the global oil 

and energy market. The novelty of this research lies 

in its comparative analysis of ten distinct machine 

learning algorithms, offering a robust and data-

driven perspective on energy demand prediction. 

Furthermore, this work contributes by identifying 

the most accurate and efficient models tailored to 

OPEC’s energy patterns, which can support policy-

making, economic planning, and energy 

sustainability strategies. The outcomes of this 

research are expected to guide future efforts in 

data-driven energy modeling and encourage the 
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integration of machine learning approaches in 

international energy policy analysis. 

2. Data Collection and Preprocessing: 

For this analysis, we will leverage multiple data 

sources to comprehensively understand energy 

consumption patterns in OPEC countries and 

develop predictive models for forecasting future 

consumption trends. Historical energy 

consumption data for OPEC countries will serve as 

the primary dataset for our analysis. This data, 

obtained from the U.S. Energy Information 

Administration (EIA) database, includes records of 

energy consumption over time, disaggregated by 

sector (residential, commercial, industrial) and 

energy source (electricity, petroleum, natural gas). 

By analyzing historical consumption trends, we 

aim to identify energy demand patterns and drivers 

in OPEC nations. Socio-economic indicators such 

as population demographics, GDP per capita, 

urbanization rate, and household income levels will 

be sourced from international databases such as the 

World Bank and the International Monetary Fund 

(IMF). These indicators provide insights into the 

socio-economic context and underlying factors 

influencing energy consumption patterns in OPEC 

countries. 

Meteorological data will be sourced from 

meteorological agencies and global climate 

datasets, including temperature, humidity, solar 

radiation, and wind speed. Environmental factors 

play a significant role in shaping energy demand, 

particularly in sectors such as residential heating 

and cooling, transportation, and agriculture. By 

integrating meteorological data into our analysis, 

we can capture the impact of weather variations on 

energy consumption patterns. Information on 

energy prices, including the cost of electricity, 

petroleum products, and natural gas, will be 

obtained from national energy agencies and 

international organizations. Energy prices 

influence consumer behavior and investment 

decisions, affecting energy demand across various 

sectors. Incorporating price data into our analysis 

enables us to assess the relationship between 

energy prices and consumption levels in OPEC 

countries. By combining data from these diverse 

sources, we aim to develop comprehensive 

predictive models that account for the multifaceted 

nature of energy consumption dynamics in OPEC 

nations. Integrating historical consumption data, 

socio-economic indicators, environmental factors, 

and energy prices will facilitate a holistic 

understanding of energy demand drivers and 

enhance the accuracy of our predictions. 

Before analysis, the collected data undergoes 

thorough preprocessing to ensure its quality and 

suitability for predictive modeling. Handling 

missing values is the priority, where techniques 

like mean, median, or mode substitution are 

employed for numerical features, and predictive 

models may be utilized to estimate missing values 

based on other relevant variables. Subsequently, 

normalization techniques such as Min-Max scaling 

or Z-score normalization are applied to rescale 

numerical features, ensuring that all features 

contribute equally to the analysis. Feature 

engineering plays a crucial role in enhancing the 

dataset's predictive power, involving creating new 

features or transforming existing ones to capture 

underlying patterns better. Time-related, lag, 

interaction, and polynomial features are generated 

to account for seasonality, temporal trends, 

autocorrelation, and nonlinear relationships in the 

data. Outliers are detected, removed, or 

transformed using robust methods to mitigate their 

impact on predictive models. Furthermore, 

categorical variables are encoded into numerical 

representations using one-hot or label encoding 

techniques to facilitate their incorporation into 

machine learning models. These preprocessing 

steps collectively ensure that the data is clean, 

normalized, and appropriately structured for 

analysis, laying the foundation for accurate 

forecasting of energy consumption patterns in 

OPEC countries. 

 
(a) Nuclear (billion kWh) 
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(b) Coal (billion kWh) 

 
(c) Natural gas (billion kWh) 

 
(d) Oil (billion kWh) 

 
(e) Other gases (billion kWh) 

 
(f) Geothermal (billion kWh) 

 
(g) Hydroelectricity (billion kWh) 
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(h) Tide and wave (billion kWh) 

 
(i) Solar (billion kWh) 

 
(j) Wind (billion kWh) 

 
(k) Biomass and waste (billion kWh) 

 
(L) Hydroelectric pumped storage (billion kWh) 

 
(m) Consumption (billion kWh) 

Figure 1: Parameters of dataset number 

3. Machine Learning: 

Machine learning, a transformative field within 

artificial intelligence, focuses on developing 

algorithms and models that enable computer 

systems to learn from data and improve their 

performance without explicit programming [30]. 

The essence of machine learning lies in the ability 

of systems to identify patterns, make predictions, 
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and derive insights from vast and complex datasets. 

This multidisciplinary field integrates principles 

from computer science, statistics, and mathematics 

to create algorithms capable of autonomously 

learning and adapting to new information. 

Supervised learning involves training models on 

labeled datasets, while unsupervised learning 

discovers patterns in unlabeled data. 

Reinforcement learning emphasizes decision-

making in dynamic environments through trial-

and-error learning. Machine learning applications 

span diverse domains, including natural language 

processing, image and speech recognition, medical 

diagnosis, finance, and predictive analytics. As 

technology advances, the pervasive influence of 

machine learning continues to reshape industries, 

offering solutions to intricate problems and 

unlocking unprecedented possibilities in data-

driven decision-making. 

 

3.1 Simple Linear Regression: 

It is one of the oldest regression techniques, dating 

back to the early 19th century. It assumes a linear 

relationship between the dependent and 

independent variables and seeks to find the best-fit 

line [31]. A linear regression model that establishes 

a relationship between a dependent variable and a 

single independent variable. It assumes a linear 

relationship and aims to find the best-fitting line 

through the data points. It is suitable when there is 

a clear linear correlation between input and output 

variables. Modeling the link between a single 

independent and dependent variable is done 

statistically. The objective is to create a linear 

connection between the two variables to make 

predictions or understand the link between them. 

The approach is predicated on the idea that a 

straight line may adequately describe the 

connection between the variables. A basic linear 

regression model's equation is as follows: 

𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋 + 𝜀 (1) 

where: 

• Y is the dependent variable (the variable y

ou are trying to predict). 

• X is the independent variable (the variable

 used for prediction). 

• β0 is the y-intercept (the value of Y when 

X is 0). 

• β1 is the slope of the line (representing th

e change in Y for a unit change in X). 

• ε is the error term (represents the unobser

ved factors affecting Y that X does not exp

lain). 

 

3.2 Gaussian Processes: 

Developed in the middle of the 20th century, 

Gaussian Processes (GPs) is a non-parametric 

approach that may depict complex interactions 

without requiring a specific functional form [32]. 

They come in handy for regression and 

classification. A non-parametric, probabilistic 

model that defines a distribution over functions. 

For regression tasks, uncertainty estimates are 

provided in addition to predictions. Helpful in 

effectively communicating prediction uncertainty 

and managing nonlinear interactions. Considering 

everything, GPs are a powerful and flexible 

framework used in machine learning for modeling 

and predicting situations where the relationships 

between variables are hazy or unclear. GPs are non-

parametric models that may find complex, 

nonlinear patterns in data. They are frequently used 

in probabilistic classification problems and 

regression. It is a powerful and flexible machine-

learning method primarily used for regression and 

probabilistic classification tasks. Gaussian 

Processes offer a powerful, probabilistic approach 

to regression that is particularly useful when it is 

important to quantify uncertainty in predictions. 

However, their computational complexity can be a 

limiting factor for very large datasets. 

At the core of Gaussian Processes is defining a 

distribution over functions. Unlike traditional 

machine learning models that provide point 

estimates, GPs offer a probabilistic approach, 

predicting a distribution of possible functions that 

fit the data. GPs assume that any finite set of 

function values follows a multivariate Gaussian 

distribution. This distribution is defined by a mean 

function and a covariance function (kernel). The 

mean function (𝑚(𝑥)) represents the average of the 

function values at each point ( 𝑥 ). It is often 

assumed to be zero for simplicity (𝑚(𝑥)  =  0 ). 

The covariance function 𝑘(𝑥, 𝑥′)  defines the 

covariance between pairs of points 𝑥  and 𝑥′ . It 

encodes assumptions about the function's 

properties, such as smoothness and periodicity. 

Common kernels include the Radial Basis Function 

(RBF), the Gaussian kernel, and the Matérn kernel. 

Before observing any data, GPs define a prior 

distribution over functions based on the mean and 

covariance functions. These prior captures our 

initial beliefs about the function's behavior. When 

data points (𝑋, 𝑦) are observed, where 𝑋 is the set 

of input features, and 𝑦 is the set of target values, 
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GPs update the prior distribution to a posterior 

distribution using Bayes' theorem. The posterior 

distribution combines the prior and the observed 

data, resulting in a new distribution that is more 

concentrated around the observed data points. The 

updated mean and covariance functions are 

computed as follows: 

The new mean function 𝑚∗(𝑥) is influenced by the 

observed data and indicates the expected function 

value at each point 𝑥. The new covariance function  

𝑘∗(𝑥, 𝑥′) reflects the updated uncertainty about the 

function values after observing the data. Given a 

new input  𝑥∗, the GP model provides a Gaussian 

distribution for the corresponding output 𝑦∗ . The 

mean of this distribution gives the predicted value, 

and the variance gives the uncertainty of the 

prediction. 

For a set of training points (𝑋, 𝑦) , where 𝑋 =
 [𝑥1, 𝑥2, . . . , 𝑥𝑛] and 𝑦 =  [𝑦1, 𝑦2, . . . , 𝑦𝑛], the joint 

distribution of the training outputs 𝑦  and the test 

outputs 𝑦∗ for test inputs 𝑥∗ is given by: 

 

(
𝑦
𝑦∗

) ~𝑁 (0, (
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼   

𝐾(𝑥∗, 𝑋)

𝐾(𝑋, 𝑥_ ∗)

𝐾(𝑥∗, 𝑥∗)
)) (2) 

                                    

Here, 𝐾(𝑋, 𝑋)  is the covariance matrix for the 

training points, 𝐾(𝑋, 𝑥∗) is the covariance between 

training points and test points, and 𝜎𝑛
2 is the noise 

variance. 

 

The conditional distribution of 𝑦∗ given 𝑋 and 𝑦 is: 

 
𝑦∗ | 𝑋, 𝑦, 𝑥∗~𝑁 ( 𝑚∗(𝑥∗), 𝑘∗(𝑥∗, 𝑥∗) )  (3) 

 

where: 

 
𝑚∗(𝑥∗)  =  𝐾(𝑥∗, 𝑋)[ 𝐾(𝑋, 𝑋)

+ 𝜎𝑛
2𝐼 ]−1𝑦 

(4) 

 

𝑘∗(𝑥∗, 𝑥∗)  
=  𝐾(𝑥∗, 𝑥∗)  
−  𝐾(𝑥∗, 𝑋)[ 𝐾(𝑋, 𝑋)
+  𝜎𝑛

2𝐼]−1 𝐾(𝑋, 𝑥∗) 

(5) 

 

GPs are flexible and do not assume a fixed form for 

the modeled function. GPs provide not just 

predictions but also a measure of uncertainty for 

those predictions. The choice of kernel allows GPs 

to model various types of data patterns. GPs require 

the inversion of an 𝑛 ×  𝑛  matrix, which is 

computationally expensive for large datasets 

(where 𝑛  is the number of training points). The 

performance of GPs depends on the choice of 

kernel and its hyperparameters, which may require 

optimization.  

 

3.3 Multilayer Perceptron (MLP): 

MLP traces its roots back to the 1940s as a 

fundamental neural network architecture. It gained 

popularity in the 1980s with the development of 

backpropagation algorithms [33]. MLPs are 

versatile and widely used for various machine-

learning tasks—an artificial neural network with 

nonlinear activation functions and several layers of 

nodes or neurons. MLPs are versatile and can learn 

complex patterns. It is well-suited for capturing 

intricate data relationships, especially in nonlinear 

cases. Multilayer Perceptrons are powerful tools 

for various machine learning tasks, leveraging 

layers of neurons and nonlinear activation 

functions to learn from data. Their effectiveness 

depends on careful design, training, and evaluation 

to balance complexity and generalization. 

A Multilayer Perceptron (MLP) is an artificial 

neural network commonly used for classification 

and regression tasks. It is composed of multiple 

layers of nodes (neurons) that are fully connected, 

where each layer transforms the input data using 

weights that are adjusted during training. The input 

layer consists of nodes representing the input data's 

features. The number of nodes in this layer equals 

the number of input features—one or more layers 

between the input and output layers where 

computation is performed. The nodes in these 

layers apply activation functions to introduce non-

linearity and enable the network to learn complex 

patterns. The final layer produces the output of the 

network. The number of nodes in this layer 

depends on the task (e.g., one node for regression 

multiple nodes for classification). Each connection 

between nodes has an associated weight, and each 

node (except those in the input layer) has an 

associated bias. These parameters are adjusted 

during training to minimize network error. 

Functions are applied to each node's output in the 

hidden and output layers. Common activation 

functions include Sigmoid, Tanh, and ReLU 

(Rectified Linear Unit). 

 Input data is fed into the input layer and passed 

through the network layer by layer. A weighted sum 

of inputs is calculated for each node in a hidden or 

output layer, including a bias term. 

 

𝑧 =  ∑(𝑤𝑖 . 𝑥𝑖)

𝑖

  +  𝑏 (6) 

 

where 𝑧 is the weighted sum, 𝑤𝑖 are the weights, 𝑥𝑖 

are the inputs, and 𝑏 is the bias. The weighted sum 
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is passed through an activation function to 

introduce non-linearity. 

 
     𝑎 =  𝜎(𝑧) (7) 

 

where 𝜎  is the activation function, and 𝑎  is the 

node's output. The network's output is compared to 

the target values using a loss function, such as 

Mean Squared Error (MSE) for regression or 

Cross-Entropy Loss for classification. The loss 

quantifies the difference between the predicted and 

actual values. The error from the output layer is 

propagated backward through the network to 

update the weights and biases. The gradient of the 

loss function concerning each weight and bias is 

calculated using the chain rule. Weights and biases 

are updated using an optimization algorithm such 

as Stochastic Gradient Descent (SGD) or Adam. 

The update rule for a weight 𝑤 is: 

 

𝑤𝑛𝑒𝑤  =  𝑤𝑜𝑙𝑑  −  𝜂 .
𝜕𝐿

𝜕𝑤
 (8) 

 

where 𝜂 is the learning rate and 
𝜕𝐿

𝜕𝑤
 is the gradient 

of the loss function concerning the weight. The 

process of forward propagation, loss calculation, 

and backpropagation is repeated for many epochs 

(iterations) until the network's performance 

converges to an acceptable level. 

MLPs can model complex, nonlinear relationships 

due to their multiple layers and nonlinear activation 

functions. Properly trained MLPs can generalize to 

unseen data if sufficient training data and 

regularization techniques are used. Training MLPs, 

especially with many layers and neurons, can be 

computationally intensive and require significant 

computational resources. MLPs are prone to 

overfitting, especially with limited training data. 

Techniques such as dropout, regularization, and 

cross-validation are often used to mitigate this. 

Specify the number of layers, the number of 

neurons in each layer, and the activation functions. 

Initialize weights and biases, typically using small 

random values. A large dataset is used to train the 

network, adjusting the weights and biases through 

backpropagation and an optimization algorithm. 

Assess the network’s performance on a separate 

validation set to ensure it generalizes well to new 

data. Adjust hyperparameters to improve 

performance, such as learning rate, number of 

layers, and regularization terms. 

 

3.4 Sequential Minimal Optimization for 

Regression (SMOreg): 

Developed by John Platt in the late 1990s, SMOreg 

is a support vector machine (SVM) algorithm 

tailored for regression tasks [34]. It efficiently 

sequentially optimizes the SVM objective 

function—a regression version of the Sequential 

Minimal Optimization (SMO) algorithm. SMOreg 

is mainly designed to solve regression problems 

using support vector machines. Effective in 

regression tasks where support vector machines are 

suitable. SVMs are supervised learning models 

commonly used for classification and regression 

tasks. In the context of regression, SVMs are called 

Support Vector Regression (SVR). The purpose of 

the SMO method is to effectively resolve the 

quadratic programming (QP) issue that comes up 

when training support vector machines (SVMs). 

SMO is an efficient algorithm for solving the 

quadratic programming problem associated with 

SVR. It iteratively optimizes pairs of Lagrange 

multipliers, making the optimization process more 

tractable than solving the entire problem 

simultaneously.  

The objective of SVR involves minimizing a 

quadratic function subject to linear constraints. The 

formulation of the Lagrange dual problem results 

in a QP problem that involves maximizing a 

quadratic objective function while adhering to 

equality and inequality constraints.  Initialize the 

Lagrange multipliers. 𝛼𝑖 for each training example. 

These multipliers represent the importance of each 

data point in the SVR model.  In each iteration, 

SMO selects a pair of Lagrange multipliers (𝛼𝑖, 𝛼𝑗) 

for optimization. The selection criteria can be 

based on heuristics or optimization strategies to 

efficiently identify pairs that violate the KKT 

(Karush-Kuhn-Tucker) conditions.  Optimize the 

chosen pair ((𝛼𝑖 , 𝛼𝑗)) by holding all other Lagrange 

multipliers fixed. The optimization involves 

updating the chosen multipliers subject to the 

equality constraints derived from the KKT 

conditions.  Compute the bias terms (b) for the 

updated Lagrange multipliers. This involves 

considering the support vectors (data points with 

non-zero Lagrange multipliers) and their 

contributions to the bias.  Check whether the 

chosen pair 𝛼𝑖 , 𝛼𝑗   satisfies the KKT conditions. 

The KKT conditions include equality and 

inequality constraints and complementary 

slackness conditions.  Update the Lagrange 

multipliers for the remaining data points to 

maintain the equality constraints. This step ensures 

that the solution remains feasible.  Check for 
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convergence by assessing whether the Lagrange 

multipliers and bias have changed significantly. If 

the changes are below a certain threshold, the 

algorithm has converged.  Repeat steps 3 to 8 until 

convergence is achieved. In each iteration, SMO 

selects different pairs of Lagrange multipliers for 

optimization.  The optimized Lagrange multipliers 

and bias determine the final SVR model. 

 

3.5 Instance-Based Learning with k-

Nearest Neighbors (lazy. IBK): 

A sort of machine learning in which the model is 

not explicitly trained is termed instance-based 

learning, also known as lazy learning or instance-

based approaches. Instead, predictions are made 

based on the similarity between new instances and 

instances from the training dataset. One popular 

instance-based learning algorithm is k-Nearest 

Neighbors (k-NN). K-Nearest Neighbors (k-NN) 

has been used since the 1950s—the lazy.IBK 

variant involves minimal training and defers most 

computations until predictions are needed [35]. It's 

effective for both regression and classification. A 

lazy learning algorithm that stores instances of the 

training data and classifies new instances based on 

their similarity to the nearest neighbors. It is 

suitable for cases where instances are locally 

clustered, and local information is essential for 

prediction.  

In the training phase of k-NN, the algorithm stores 

the entire training dataset. There is no explicit 

training involved; the dataset is the model. Choose 

a distance metric to measure the similarity between 

instances. The Manhattan distance, the Euclidean 

distance, and other similarity metrics are examples 

of standard distance metrics. Represent each 

instance in the dataset as a point in a 

multidimensional space, where each feature 

corresponds to a dimension. This representation 

allows the algorithm to measure distances between 

instances. When a new instance is presented for 

prediction or classification, k-NN identifies the k-

nearest neighbors of the recent example in the 

feature space based on the chosen distance metric. 

"k" is a hyperparameter that determines the number 

of neighbors to consider. In classification tasks, the 

technique uses the majority class among its k-

nearest neighbors to predict the class label of the 

new instance. The technique forecasts the average 

of the goal values of the k-nearest neighbors in 

regression problems. If there is a tie in the case of 

classification or if you want to give more 

importance to closer neighbors, you can use 

weighted voting. Assign weights to each neighbor 

based on distance and consider the weighted votes 

for the final prediction. Tune the hyperparameter 

"k" based on the dataset's characteristics and the 

desired trade-off between bias and variance. A 

smaller k makes the model more sensitive to noise, 

while a larger k may smooth out the decision 

boundaries. Calculating the distances between each 

new instance and every instance in the training set 

is the prediction phase in k-NN. For large datasets, 

this can be computationally expensive. Efficient 

data structures like KD trees or ball trees can be 

used to speed up this process. 

 

3.6 k*-Nearest Neighbors (lazy.Kstar): 

Modifying k-NN and k*-NN improves efficiency 

by using an adaptive approach to select neighbors 

based on distances [36]. It maintains simplicity 

while addressing some limitations of traditional k-

NN. A variant of the k-Nearest Neighbors (k-NN) 

algorithm that dynamically adapts the distance 

metric based on local instance density. Effective in 

scenarios where the density of instances varies 

across the feature space. 

The k*-Nearest Neighbors (k*-NN) algorithm is 

also known as lazy.Kstar is an instance-based 

learning or lazy learning algorithm used for 

classification and regression tasks. Unlike eager 

learning algorithms, which build a model from the 

training data before making predictions, lazy 

learning algorithms delay the learning process until 

a prediction is requested. k*-NN stores all 

available cases and only computes the results for a 

new query when required, using the stored 

instances to make predictions. Instead of using a 

fixed number of nearest neighbors (k), k*-NN uses 

a probability distribution to weigh the influence of 

all training instances based on their similarity to the 

query instance. The algorithm employs a similarity 

measure that can handle various data types and 

adapt to the specific data context, making it more 

flexible than traditional k-NN. 

In the prediction phase, when a new query instance 

needs to be classified, the algorithm computes the 

distance or similarity between the query instance 

and all stored instances. The distance metric can 

vary depending on the data type and context. k*-

NN uses a probability distribution to determine the 

influence of each training instance based on its 

distance from the query instance, using a smooth 

weighting function that assigns higher weights to 

closer instances and lower weights to farther 

instances. For classification tasks, the weighted 

votes of the neighbors are aggregated to determine 

the class of the query instance. The weighted 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
is

es
jo

ur
na

l.c
om

 o
n 

20
26

-0
2-

04
 ]

 

                            10 / 20

https://www.aisesjournal.com/article-1-22-en.html


Halil GÖR AI in Sustainable Energy and Environment, Published Online 

 

average of the neighbors’ values is computed for 

regression tasks. The key steps in k*-NN include 

defining the similarity measure, selecting an 

appropriate distance metric (e.g., Euclidean, 

Manhattan) or a more complex contextual 

similarity measure, and computing the weight for 

each training instance based on its distance to the 

query instance. A common approach is to use a 

kernel function that assigns weights based on the 

distance, such as a Gaussian kernel. For each new 

query instance, the algorithm calculates the 

distance or similarity to all stored instances, 

computes the weights for each instance based on 

the chosen similarity measure, and aggregates the 

results to make a prediction. The advantages of k*-

NN include its flexibility in handling different 

types of data and adapting the similarity measure 

to the specific context, improving prediction 

accuracy, and its simplicity in implementing 

without requiring a complex training phase. 

However, the algorithm can be slow for large 

datasets due to the computational complexity of 

calculating the distance to all training instances for 

each query, and storing all training instances can be 

memory-intensive. Overall, k*-NN is a flexible 

and powerful instance-based learning method 

suitable for various classification and regression 

tasks. 

 

3.7 Locally Weighted Learning (lazy.LWL): 

Locally Weighted Learning, often called Locally 

Weighted Regression (LWR) or Locally Weighted 

Scatterplot Smoothing (LOWESS), is a non-

parametric regression technique used for making 

predictions locally adaptive. Unlike global 

regression methods that assume a constant 

relationship across the entire dataset, LWR focuses 

on modeling the relationship within a local 

neighborhood of the query point. Overall, it was 

introduced by At&T Bell Labs in the 1990s, and it 

was lazy.LWL is another k-NN variant. It focuses 

on local regions of the input space and adapts 

weights based on the proximity of instances to the 

query point [37]. A lazy learning algorithm that 

assigns different weights to different instances 

during prediction, providing higher importance to 

locally relevant data. It is beneficial in situations 

where certain areas of the feature space have more 

influence on predictions.  

LWR aims to predict the value of a target variable 

for a given input by considering a weighted 

combination of the observed instances in the 

dataset. The weight assigned to each instance is 

determined by its proximity to the query point. 

Define a local neighborhood around the query 

point. This is typically done using a kernel or 

weighting function that assigns higher weights to 

instances closer to the query point and lower 

weights to instances farther away. Choose a 

function (kernel) that assigns weights based on the 

distance between each data point and the query 

point. Common choices include the Gaussian 

kernel or the Epanechnikov kernel. Perform a 

regression within the local neighborhood by 

assigning weights to each data point based on the 

chosen kernel. The weighted regression may be 

linear or nonlinear depending on how the variables 

relate. Predict the target variable for the query point 

by combining the predictions from the locally 

weighted regression. LWR adapts to the local 

characteristics of the data, allowing for more 

flexibility in capturing complex and nonlinear 

relationships. It provides a smooth and adaptive 

way of modeling the underlying function. 

 

3.8 Random Subspace: 

Introduced in the early 2000s, Random Subspace is 

an ensemble method that combines multiple 

models trained on random subsets of features [38]. 

It enhances model diversity, reducing overfitting. A 

model ensemble technique that builds various 

models by training each on a random subset of 

features. The final prediction is typically an 

average or voting of individual model predictions. 

It is helpful when dealing with high-dimensional 

data and aiming to reduce the risk of overfitting. In 

ovreal, random Subspace is used in ensemble 

learning, specifically in methods like Random 

Forests. It involves creating multiple subsets or 

"subspaces" of the feature space and building 

individual models on each of these subsets. The 

idea is to introduce diversity among the base 

models, making the ensemble more robust and 

capable of capturing various aspects of the 

underlying data distribution. Even though random 

subspace is a valuable ensemble learning technique 

(e.g., it balances model diversity and 

generalization), it has some limitations, such as 

Computational Cost (Training multiple models 

with different feature subsets can be 

computationally expensive, especially with large 

datasets and a large number of features) and 

Interpretability (As the number of features and 

trees increases, the interpretability of the model 

may decrease.). The Random Subspace method 

enhances the performance and robustness of 

machine learning models by leveraging the power 

of ensemble learning. By training multiple 
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classifiers on different random subsets of features, 

the method effectively reduces overfitting, handles 

noisy features, and improves generalization, 

making it a valuable technique for various 

predictive modeling tasks. 

The Random Subspace method is an ensemble 

learning technique primarily used to improve the 

performance and robustness of classifiers. It 

involves training multiple classifiers on different 

random subsets of the feature space and then 

combining their predictions. Ensemble Learning: A 

technique that combines the predictions of multiple 

models to improve the overall performance and 

reduce the risk of overfitting. Feature Subset 

Selection: Randomly selecting subsets of features 

from the original dataset to train different models, 

aggregating the predictions from multiple 

classifiers to make a final decision. Start with the 

original dataset, which consists of 𝑁 instances and 

𝐷 features. Randomly select a subset of features 

from the original 𝐷 features. The number of 

features selected can be a fixed number or a 

proportion of the total features. The selection 

process is typically done without replacement, 

meaning each feature can appear only once in a 

subset. Train each base classifier using the 

instances from the dataset but only with the 

selected subset of features. This results in multiple 

classifiers, each trained on a different "view" of the 

data. Different classifiers can be used as base 

learners, such as decision trees, support vector 

machines, or neural networks. When making 

predictions for a new instance, each classifier in the 

ensemble makes a prediction based on its subset of 

features. Combine the predictions from all 

classifiers to produce the final output. This can be 

done through various aggregation methods, such as 

majority voting for classification or averaging for 

regression. 

By training classifiers on different subsets of 

features, the ensemble reduces the risk of 

overfitting to the training data. The method 

increases robustness against noisy features, as not 

all classifiers are exposed to every feature. The 

Random Subspace method can be used with 

various base classifiers and applies to both 

classification and regression tasks. Training and 

maintaining multiple classifiers require more 

computational resources and memory. Some 

classifiers may produce redundant or highly 

correlated predictions if the feature subsets are not 

sufficiently diverse. 

Determine the number of base classifiers to include 

in the ensemble. Randomly choose subsets of 

features for each classifier. The size of each subset 

can be specified as a fixed number or a fraction of 

the total features. Train each classifier using the 

instances from the dataset with their respective 

feature subsets. When a new instance is to be 

predicted, collect the predictions from all 

classifiers and combine them using an appropriate 

aggregation method. Suppose you have a dataset 

with 100 features, and decide to use ten base 

classifiers in your ensemble. For each classifier, 

you randomly select 20 out of the 100 features. 

Each classifier is then trained on the instances 

using only these 20 features. When making a 

prediction, each classifier provides an output based 

on its trained model, and the final prediction is 

determined by combining these outputs, such as by 

majority vote for classification tasks. 

 

3.9 Random Committee 

The Random Committee method is an ensemble 

learning technique that improves the accuracy and 

robustness of predictive models by creating 

multiple instances of the same base classifier, each 

trained on the same dataset but with different 

random initializations [39]. These classifiers are 

then combined to produce a final output. The key 

concepts of Random Committee involve ensemble 

learning, random initialization, and classifier 

combination. In practice, the original dataset trains 

all classifiers in the ensemble, with each classifier 

initialized differently. During training, each 

classifier learns slightly different patterns from the 

data due to its unique initialization. In the 

prediction phase, each classifier provides its 

prediction for a new instance, and these predictions 

are aggregated to produce the final output, 

commonly using methods such as majority voting 

for classification or averaging for regression. The 

advantages of this method include improved 

accuracy, robustness to overfitting, and simplicity 

in implementation. However, it requires more 

computational resources and memory, and the 

diversity among classifiers is limited to their 

random initializations. The practical steps involve 

defining the ensemble size, initializing multiple 

instances of the base classifier, training each 

classifier on the entire dataset, and aggregating 

their predictions for new instances. For example, 

using Random Committee with ten instances of a 

decision tree classifier, each tree is trained on the 

same dataset but with different random seeds 

affecting splits or data processing order. The final 

prediction is determined by a majority vote or 

averaging, enhancing the model's overall 

performance and robustness. 
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3.10 Random Forest 

Building on the concepts of ensemble learning, 

Random Committee involves training several 

models independently and combining their 

predictions [40]. Both generalization and 

robustness are improved. Model ensemble building 

is similar to Random Subspace, except it employs 

different subsets of the training data. Effective at 

merging many models' predictions to enhance 

generality. In 2001, Leo Breiman also introduced 

Random Forest. An ensemble learning method 

called Random Forest creates a lot of decision trees 

[41]. To decrease overfitting and increase accuracy, 

it integrates predictions from several trees. A 

method for group learning that produces a lot of 

decision trees during training and outputs the class 

mode (classification) or mean prediction 

(regression) of each tree. Robust and versatile, 

suitable for various tasks, and effective at handling 

complex connections. 

Random Forest is a versatile and widely-used 

ensemble learning method for classification and 

regression tasks. It works by constructing multiple 

decision trees during training and outputting the 

mode of the classes (for classification) or the mean 

prediction (for regression) of the individual trees. 

Random Forests enhance the predictive 

performance of decision trees by combining the 

outputs of multiple trees trained on different 

subsets of the data and feature sets. This ensemble 

approach improves accuracy, reduces overfitting, 

and provides insights into feature importance, 

making it a powerful tool for various machine-

learning tasks. Random Forests belong to the 

ensemble learning family, where the predictions of 

multiple models (decision trees, in this case) are 

combined to improve overall performance and 

robustness. Each tree in the forest is a decision tree. 

In this flowchart-like structure, each internal node 

represents a feature (or attribute), each branch 

represents a decision rule, and each leaf node 

represents an outcome (or class label). During the 

training phase, Random Forest uses bootstrap 

aggregating, or bagging. Multiple subsets of the 

training data are created by random sampling with 

replacement. Each subset is used to train a different 

decision tree. This helps reduce the variance and 

overfitting typically associated with individual 

decision trees. 

 When splitting nodes in each decision tree, 

Random Forests introduce additional randomness 

by selecting a random subset of features. This 

means that each split is based on only a random 

selection of features rather than all features, 

promoting diversity among the trees and improving 

model robustness. Each decision tree is trained on 

a different subset of the data and grows to its 

maximum depth without pruning. The goal is for 

each tree to learn different patterns from the data 

due to the variations in the bootstrap samples and 

the random feature selection. For classification 

tasks, when a new input is fed into the Random 

Forest, it is passed down to each decision tree in 

the forest. Each tree provides a classification, and 

the forest outputs the class that receives the 

majority vote. Each tree provides a numerical 

prediction for regression tasks, and the forest 

outputs the average of these predictions. 

By averaging multiple trees, Random Forests 

reduce the risk of overfitting, which is common 

with individual decision trees. Combining multiple 

trees generally results in better predictive 

performance and robustness to noise in the data. 

Random Forests can estimate the importance of 

different features in the prediction task, which is 

useful for understanding the underlying data. 

 Training many deep trees can be computationally 

intensive and require significant memory, 

especially with large datasets. While individual 

decision trees are easy to interpret, the overall 

Random Forest model, an ensemble of many trees, 

can be complex and less interpretable. 

 

4. Results and Discussion: 

To accurately evaluate predictive models' 

performance, the dataset will be divided into 

training and testing sets using a suitable splitting 

strategy. Before splitting the data, the dataset will 

be randomized to ensure that the samples are 

randomly shuffled. This helps prevent any bias or 

systematic patterns in the data that could affect 

model performance. The dataset will be partitioned 

into two subsets: training and testing sets. The 

training set will comprise most of the data (e.g., 70-

80%), while the testing set will consist of the 

remaining portion (e.g., 20-30%). Suppose the 

dataset is imbalanced or contains categorical target 

variables. In that case, a stratified splitting 

approach may be employed to ensure that the 

distribution of classes is preserved in both the 

training and testing sets. This helps prevent 

potential biases in model evaluation, particularly 

for classification tasks. A temporal splitting 

approach may be used if the dataset exhibits 

temporal dependencies or time-series patterns. In 

this case, the dataset is divided into training and 

testing sets based on a chronological time frame, 

ensuring that training data precedes testing data. 
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This approach helps evaluate the model's 

generalization ability to unseen future data. In 

addition to a single train-test split, cross-validation 

techniques such as k-fold cross-validation or time-

series cross-validation may be employed for robust 

model evaluation. These techniques involve 

repeatedly splitting the data into multiple folds, 

training the model on different subsets, and 

averaging the performance metrics across folds to 

obtain more reliable estimates of model 

performance. Sometimes, a separate validation set 

may be used for hyperparameter tuning and model 

selection. This validation set is distinct from the 

training and testing sets. It is used to assess the 

performance of different model configurations 

before finalizing the chosen model for evaluation 

on the testing set.  

By following these steps, we ensure that the 

predictive models are trained on a representative 

subset of the data and evaluated on unseen data to 

assess their generalization performance accurately. 

This approach helps mitigate overfitting and 

provides reliable estimates of model performance 

in predicting energy consumption patterns in 

OPEC countries. To ensure the accuracy and 

reliability of predictive models for energy 

consumption in OPEC countries, the dataset will 

systematically be divided into training and testing 

sets. Initially, the dataset will be randomized to 

eliminate inherent biases or patterns. Following 

randomization, the dataset will be partitioned into 

two subsets, with the majority allocated to the 

training set (typically 70-80%) and the remainder 

reserved for the testing set. This partitioning 

ensures that the models are trained on a 

representative sample of the data and evaluated on 

unseen data, enabling an accurate assessment of 

their generalization performance. Suppose the 

dataset is imbalanced or contains categorical target 

variables, a stratified splitting approach will be 

employed to preserve the distribution of classes or 

target variable values in both sets. 

Additionally, if temporal dependencies are present, 

a temporal splitting approach will be utilized, 

ensuring that the training set contains data from 

earlier periods while the testing set comprises data 

from later periods. Finally, cross-validation 

techniques such as k-fold cross validation or time-

series cross-validation may be applied to assess 

model stability and generalization ability further. 

Following these systematic steps, we aim to 

develop predictive models that effectively capture 

energy consumption patterns in OPEC countries 

and provide reliable energy planning and policy-

making insights. 

We will employ hyperparameter tuning and 

rigorous model validation techniques to optimize 

the performance of predictive models for energy 

consumption in OPEC countries. Hyperparameters, 

including model-specific, regularization, learning 

rates, and kernel parameters, will be tuned to 

enhance model performance and prevent 

overfitting. Model validation will involve a train-

validation split of the training data, allowing us to 

evaluate various hyperparameter configurations 

and select the optimal model. Additionally, cross-

validation techniques such as k-fold cross-

validation or time-series cross-validation may be 

utilized to assess model stability and generalization 

ability across different subsets of the data. 

Performance metrics such as mean squared error 

(MSE), root mean squared error (RMSE), mean 

absolute error (MAE), coefficient of determination 

(R-squared), or classification accuracy will be 

employed to evaluate model performance 

quantitatively. By systematically tuning 

hyperparameters and performing robust model 

validation, we aim to develop predictive models 

that accurately capture energy consumption 

patterns in OPEC countries and provide actionable 

insights for energy planning and policy-making. 
The performance of various machine learning 

methods was evaluated during the training phase, 

with each model assessed based on multiple 

metrics, including R², Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), Relative 

Absolute Error (RAE), and Root Relative Squared 

Error (RRSE). Among the models, Random 

Committee achieved the highest performance with 

an R² of 0.9999, MAE of 0.7411, RMSE of 1.0509, 

RAE of 1.2199%, and RRSE of 1.2399%, resulting 

in a total ranking score of 50 and the top rank 

overall. Lazy.Kstar also performed well with an R² 

of 0.9995 and a total ranking score of 44, securing 

the second rank—conversely, models such as 

lazy.LWL showed relatively poor performance, 

with the lowest R² of 0.8857 and the highest errors 

across all metrics, leading to the lowest total 

ranking score of 5 and rank of 10. Other models 

like MLP, Simple Linear Regression, and SMOreg 

exhibited strong R² values (0.9964, 0.9957, and 

0.9956, respectively) but varied in their ranking 

scores, placing them in the middle of the 

performance spectrum. Gaussian Processes, 

Random Subspace, and Random Forest also 

demonstrated high accuracy, with Random Forest 

achieving an R² of 0.9990 and a total ranking score 

of 38, earning it the third rank. These results 

highlight the superior predictive capabilities of 

ensemble methods like Random Committee and 
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Random Forest in the context of energy 

consumption prediction for OPEC countries. 

 

Various machine learning models were evaluated 

during the testing phase to determine their 

predictive accuracy and reliability. Lazy.Kstar 

emerged as the top-performing model with an R² of 

0.9965, MAE of 5.5216, RMSE of 9.8002, RAE of 

8.6381%, and RRSE of 10.1235%, achieving the 

highest total ranking score of 46 and securing the 

first rank overall. Simple Linear Regression also 

demonstrated strong performance with an R² of 

0.9948 and a total ranking score of 44, earning it 

the second rank. SMOreg ranked third with an R² 

of 0.9943 and a total ranking score of 42. Despite 

its high R² value of 0.9949, lazy.IBK scored lower 

in other metrics, resulting in a fourth-place rank 

with a total ranking score of 35. The MLP model 

showed decent performance with an R² of 0.9944 

and a ranking score of 33, placing it fifth. Random 

Forest and Gaussian Processes, with R² values of 

0.9914 and 0.9888, respectively, achieved 

moderate performance with ranking scores of 22 

and 21, placing them sixth and seventh, 

respectively. Despite having an R² of 0.9928, 

Random Subspace ranked eighth with a total score 

of 15. The Random Committee model, with an R² 

of 0.9525, showed weaker performance in the 

testing phase, resulting in a ninth-place rank with a 

total score of 12. Lazy.LWL was the least effective 

model, with a significantly lower R² of 0.8800 and 

high error metrics, leading to the lowest total 

ranking score of 5 and ranking tenth. These results 

underscore the varying effectiveness of different 

machine learning models in predicting energy 

consumption for OPEC countries, with Lazy.Kstar 

and Simple Linear Regression emerged as the most 

reliable models during the testing phase. 

The combined performance of various machine 

learning models across training and testing phases 

highlights their overall effectiveness in predicting 

energy consumption for OPEC countries. 

Lazy.Kstar emerged as the top performer with a 

total score of 90, securing the first rank due to its 

consistently high R² values and low error metrics 

in both phases. Simple Linear Regression also 

demonstrated robust performance, achieving a total 

score of 72 and the second rank, followed closely 

by SMOreg, which attained a total score of 69 and 

ranked third. The MLP and Random Committee 

models achieved a total score of 62, tying for fourth 

place, showcasing their strong predictive 

capabilities. Lazy.IBK and Random Forest, with 

total scores of 60 each, were ranked sixth, 

indicating moderate performance. Despite its 

competitive results in some metrics, Gaussian 

Processes ranked eighth with a total score of 39. 

Random Subspace, with a total score of 26, ranked 

ninth. Finally, Lazy.LWL was ranked tenth with 

consistently low performance metrics and a total 

score of 10. These rankings underscore the varying 

effectiveness of machine learning models, with 

ensemble methods like Lazy.Kstar and Random 

Committee generally perform well, while models 

like Lazy.LWL lag in predictive accuracy and 

reliability. 
Table 1. The result of different machine learning methods in a training phase 

Proposed 

models 

Network results Ranking the predicted models Total 

rankin

g score 

Ran

k 
R2 MAE RMSE RAE 

(%) 

RRSE 

(%) 

R
2 

MA

E 

RMSE RA

E 

(%) 

RRS

E (%) 

Simple Linear 

Regression 

0.995

7 

3.6926 7.8738 6.0779 9.2897 6 5 5 6 6 28 5 

Gaussian 

Processes 

0.991

7 

8.2645 11.892

9 

13.603

1 

14.0316 4 3 3 4 4 18 8 

MLP 0.996

4 

3.8162 7.1862 6.2814 8.4785 7 4 6 5 7 29 4 

SMOreg 0.995

6 

3.0873 8.0767 5.0815 9.5291 5 6 4 7 5 27 6 

lazy. IBK 0.967

6 

1.7232 2.4020 20.085

5 

25.2651 2 8 9 3 3 25 7 

lazy.Kstar 0.999

5 

1.3113 2.7147 2.1584 3.2029 9 9 8 9 9 44 2 

lazy.LWL 0.885

7 

29.389

7 

39.510

6 

48.374

6 

46.6160 1 1 1 1 1 5 10 

Random 

Subspace 

0.976

1 

17.035

7 

24.213

7 

28.040

3 

28.5682 3 2 2 2 2 11 9 

Random 

Committee 

0.999

9 

0.7411 1.0509 1.2199 1.2399 10 10 10 10 10 50 1 

Random Forest 0.999

0 

2.2571 4.3641 3.7152 5.1489 8 7 7 8 8 38 3 
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Table 2. The result of different machine learning methods in the testing phase 

Proposed 

models 

Network results Ranking the predicted models Total 

rankin

g score 

Ran

k 
R2 MAE RMSE RAE 

(%) 

RRSE 

(%) 

R
2 

MA

E 

RMS

E 

RA

E 

(%) 

RRS

E (%) 

Simple 

Linear 

Regression 

0.994

8 

5.4106 9.8607 8.4644 10.1860 8 9 9 9 9 44 2 

Gaussian 

Processes 

0.988

8 

11.0340 15.9029 17.2617 16.4276 3 4 5 4 5 21 7 

MLP 0.994

4 

6.3164 10.5044 9.8814 10.8509 7 6 7 6 7 33 5 

SMOreg 0.994

3 

4.9416 10.4019 7.7307 10.7451 6 10 8 10 8 42 3 

lazy. IBK 0.994

9 

5.5859 10.7424 8.7386 11.0968 9 7 6 7 6 35 4 

lazy.Kstar 0.996

5 

5.5216 9.8002 8.6381 10.1235 10 8 10 8 10 46 1 

lazy.LWL 0.880

0 

36.9461 51.5478 57.7988 53.2485 1 1 1 1 1 5 10 

Random 

Subspace 

0.992

8 

12.7976 19.5344 20.0206 20.1788 5 2 3 2 3 15 8 

Random 

Committee 

0.952

5 

11.4795 30.6585 17.9586 31.6700 2 3 2 3 2 12 9 

Random 

Forest 

0.991

4 

8.0524 16.4844 12.5973 17.0282 4 5 4 5 4 22 6 

 
Table 3. Ranking of training and testing 

Proposed models Network result Total 

score 

Tota

l 

rank 
Training dataset Testing dataset 

R2 MAE RMS

E 

RAE 

(%) 

RRSE 

(%) 

R2 MA

E 

RMS

E 

RA

E 

RRS

E 

Simple Linear 

Regression 

6 5 5 6 6 8 9 9 9 9 72 2 

Gaussian 

Processes 

4 3 3 4 4 3 4 5 4 5 39 8 

MLP 7 4 6 5 7 7 6 7 6 7 62 4 

SMOreg 5 6 4 7 5 6 10 8 10 8 69 3 

lazy. IBK 2 8 9 3 3 9 7 6 7 6 60 6 

lazy.Kstar 9 9 8 9 9 10 8 10 8 10 90 1 

lazy.LWL 1 1 1 1 1 1 1 1 1 1 10 10 

Random Subspace 3 2 2 2 2 5 2 3 2 3 26 9 

Random 

Committee 

10 10 10 10 10 2 3 2 3 2 62 4 

Random Forest 8 7 7 8 8 4 5 4 5 4 60 6 
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Figure 2. Machine learning ranking 

 

5. Discussion: 

The comprehensive analysis of various machine 

learning models for predicting energy consumption 

in OPEC countries yielded several key insights—

the superior performance of Lazy.Kstar, which 

achieved the highest overall rank with a total score 

of 90, indicates that this model is highly effective 

in capturing complex patterns in the energy 

consumption data. Its consistently high R² values 

and low error metrics suggest it can provide 

reliable and accurate predictions. Simple Linear 

Regression, with a total score of 72, also 

demonstrated strong predictive capabilities, 

highlighting the utility of simpler models in certain 

contexts. The moderate performance of models like 

MLP and Random Committee, each with a total 

score of 62, underscores the importance of neural 

networks and ensemble methods in handling 

diverse datasets. However, the relatively lower 

ranks of models such as Gaussian Processes and 

Random Subspace, with scores of 39 and 26, 

respectively, suggest that while they are useful, 

they may not be as robust for this particular 

application—the consistently poor performance of 

Lazy.LWL, with a total score of 10, highlights its 

limitations and suggests that it may not be suitable 

for predicting energy consumption in OPEC 

countries. These insights emphasize the 

importance of selecting the appropriate model 

based on specific data characteristics and 

prediction requirements. Overall, the findings 

underscore the potential of advanced machine 

learning techniques to enhance energy 

consumption forecasting, thereby aiding in more 

informed energy planning and policy-making for 

OPEC countries. 

Applying machine learning methods to predict 

energy consumption in OPEC countries offers 

several strengths and limitations. One of the main 

strengths is the ability of advanced algorithms like 

Lazy.Kstar and Random Committee capture 

complex patterns and interactions in the data, 

leading to highly accurate predictions. Additionally, 

using cross-validation techniques enhances the 

robustness and generalizability of the models. 

However, there are several limitations and 

potential sources of error. Firstly, the quality and 

completeness of the input data from sources such 

as www.eia.gov are crucial; any missing or 

inaccurate data can significantly affect the model's 

performance. 

Moreover, the models' reliance on historical data 

may not fully account for future changes in energy 

consumption patterns due to unforeseen 

geopolitical, economic, or environmental factors. 

Another limitation is the potential overfitting of 

some models, despite efforts to mitigate this 

through regularization and cross-validation. 

Overfitting can result in models that perform well 

on training data but poorly on unseen data. 

Additionally, the computational complexity of 
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certain algorithms, such as neural networks and 

ensemble methods, may pose challenges regarding 

processing time and resource requirements. Lastly, 

the interpretability of complex models can be an 

issue, making it difficult to derive actionable 

insights and explain the predictions to stakeholders. 

Addressing these limitations requires ongoing 

refinement of models, incorporating more diverse 

and high-quality data, and developing methods to 

enhance model interpretability and robustness. 

The findings from this analysis have significant 

implications for policymakers, energy analysts, 

and other stakeholders involved in energy planning 

and policy-making for OPEC countries. The ability 

of advanced machine learning models, particularly 

Lazy.Kstar and Random Committee, accurately 

predicting energy consumption can greatly 

enhance the precision of energy demand forecasts. 

This, in turn, enables more effective and informed 

decision-making regarding resource allocation, 

infrastructure investment, and strategic planning. 

For policymakers, the insights gained from these 

models can inform the development of robust 

energy policies that ensure a stable and sustainable 

energy supply, adapt to changing demand patterns, 

and mitigate the impacts of economic or 

geopolitical shifts. Energy analysts can leverage 

these predictive models to conduct more nuanced 

analyses, identify trends, and evaluate the potential 

impacts of different policy scenarios. 

Furthermore, stakeholders such as energy 

producers and investors can use these predictions 

to optimize production schedules, plan for future 

capacity expansions, and manage financial risks 

more effectively. However, it is essential for all 

stakeholders to recognize the limitations and 

uncertainties inherent in predictive modeling, such 

as data quality and the potential for unforeseen 

future events, and to complement these models 

with qualitative insights and expert judgment. 

Overall, integrating machine learning predictions 

into the energy planning process can lead to more 

resilient and adaptive energy systems, benefiting 

both the OPEC countries and the global energy 

market. 

6. Conclusions 

In this study, we investigated the application of ten 

different machine learning algorithms to predict 

energy consumption in OPEC countries using 

historical data from the U.S. Energy Information 

Administration. Among the tested models, the 

Random Committee, lazy.Kstar, and Simple Linear 

Regression demonstrated the highest performance 

in both training and testing phases, with Random 

Committee achieving the top overall rank. These 

results highlight the potential of ensemble and 

instance-based learning methods in accurately 

modeling complex energy consumption patterns. 

The findings are significant for policymakers and 

analysts, as reliable forecasts can support informed 

decision-making in energy management and 

strategic planning. Future research can expand this 

framework by incorporating deep learning methods 

and external variables such as economic indicators, 

environmental policies, and geopolitical events to 

further enhance prediction accuracy. 
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