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The accurate energy consumption prediction for OPEC (Organization of the Petroleum
Exporting Countries) member states is vital for strategic planning and policy-making
in the global energy market. This study leverages advanced machine learning
techniques to forecast energy consumption, utilizing historical data from the U.S.
Energy Information Administration (EIA). We applied a variety of machine learning
models, including Simple Linear Regression, Gaussian Processes, Multilayer
Perceptron (MLP), SMOreg, IBK, Kstar, LWL, Random Subspace, Random
Committee, and Random Forest, to the task of predicting energy consumption. The
performance of these models was evaluated based on metrics such as R-squared (R?),
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Relative Absolute
Error (RAE), and Root Relative Squared Error (RRSE). Our results demonstrated that
the Random Committee model achieved the highest accuracy in both training (R? =
0.9999, MAE = 0.7411, RMSE = 1.0509, RAE = 1.2199%, RRSE = 1.2399%) and
testing phases (R2 = 0.9525, MAE = 11.4795, RMSE = 30.6585, RAE = 17.9586%,
RRSE = 31.6700%), highlighting its robustness and predictive power. In contrast, the
LWL model showed the poorest performance, with significant errors in both phases.
The study also highlights the strengths and limitations of each model, with a focus on
the applicability of these findings for policymakers and energy analysts. The insights
gained from this research underscore the potential of machine learning to enhance
energy consumption forecasting, providing a foundation for future studies to build
upon. Directions for future research include incorporating additional socio-economic
and environmental variables, real-time data, and more advanced machine learning
techniques to improve prediction accuracy and reliability further.

1. Introduction:

serve as critical economic assets. Accurate
forecasts of energy consumption are essential for
managing these resources sustainably and ensuring

The Organization of the Petroleum Exporting
Countries (OPEC) has wielded considerable
influence over global energy markets since its
establishment in 1960. Comprising 13 member
countries, including major oil-producing nations
like Saudi Arabia, Iran, and Venezuela, OPEC's
primary objective is coordinating petroleum
policies to ensure market stability and fair prices
for producers and consumers [1]. Predicting energy
consumption for OPEC countries is paramount for
several reasons [2]. Firstly, these nations are home
to vast crude oil and natural gas reserves, which
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long-term economic viability [3]. Furthermore,
OPEC's decisions regarding oil production quotas
and pricing directly influence global oil markets.
By forecasting energy consumption, OPEC can
anticipate future demand trends, enabling informed
decisions to stabilize markets and prevent supply-
demand imbalances. Moreover, OPEC countries'
energy  consumption  predictions inform
policymaking [2]. These forecasts guide energy
efficiency, infrastructure development, and
environmental sustainability initiatives, facilitating
effective policy formulation to meet future energy
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needs [4]. Additionally, accurate predictions of
energy consumption support economic planning by
governments and businesses in OPEC nations. By
anticipating energy demands, stakeholders can
plan investments, allocate resources, and devise
strategies to foster economic growth and ensure
energy security [5]. Predicting energy consumption
for OPEC countries is crucial for maintaining
energy market stability, informing policy decisions,
and promoting sustainable economic development
[6]. This paper explores the significance of energy
consumption prediction and proposes a machine
learning-based approach to address this critical
need.

Machine learning, a field within artificial
intelligence, has become increasingly
indispensable in analyzing complex datasets and
making accurate predictions across diverse
domains [7]. In energy consumption analysis,
machine learning offers unparalleled capabilities to
extract valuable insights from vast data repositories
and rapidly forecast future consumption patterns [8,
9]. Traditional methods of energy consumption
analysis often struggle to contend with the
intricacies inherent in energy systems [10].
Economic indicators, population demographics,
climate variations, and technological
advancements contribute to the complexity of
energy consumption patterns. Machine learning
algorithms excel in handling such multifaceted
data, allowing for the identification of subtle
patterns and nonlinear relationships that traditional
techniques may overlook [11]. A myriad of
interconnected  factors  influence  energy
consumption. Machine learning algorithms are
adept at analyzing these complex interactions and
identifying hidden patterns, providing a more
comprehensive  understanding  of  energy
consumption dynamics [12]. The advent of sensor
technologies and smart meters has led to an
explosion of data in the energy sector [13].
Machine learning algorithms are inherently
scalable, enabling real-time analysis of large-scale
datasets [14]. Machine learning models can make
accurate  predictions about future energy
consumption trends by leveraging advanced
algorithms such as neural networks, decision trees,
and support vector machines. These models
capture the nonlinear relationships between
predictors and energy consumption, leading to
more reliable forecasts [15]. Energy systems are
subject to constant change due to various factors.
Machine learning models can adapt to these
changes by continuously updating their parameters
based on new data, ensuring that energy
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consumption predictions remain relevant and up-
to-date [16, 17]. Machine learning empowers
policymakers, energy analysts, and stakeholders by
providing timely and accurate insights into energy
consumption patterns. These insights inform
critical decisions regarding resource allocation,
infrastructure planning, and policy formulation.
Machine learning is pivotal in energy consumption
analysis, offering advanced analytical capabilities,
scalability, prediction accuracy, adaptability, and
decision support [8, 18]. Leveraging machine
learning techniques has the potential to
revolutionize our understanding and management
of energy systems, paving the way for a more
sustainable and efficient energy future.

Previous research has explored the application of
machine learning methods for predicting energy
consumption across various contexts, including
residential, commercial, industrial, and national
levels. These studies have contributed valuable
insights into the effectiveness of different machine
learning techniques and the factors influencing
energy consumption patterns. Several studies have
focused on predicting residential energy
consumption to inform energy efficiency initiatives
and demand-side management strategies. For
example, research by Burnett and Kiesling [19]
applied machine learning algorithms such as
decision trees and neural networks to household-
level data to forecast electricity usage accurately.
Their findings highlighted the importance of
weather conditions, household demographics, and
appliance usage patterns in predicting residential
energy consumption. Other studies have explored
energy consumption prediction in commercial and
industrial settings to optimize energy usage and
reduce operational costs. For instance, Liu, et al.
[20] developed predictive models using support
vector machines and time-series analysis
techniques to forecast energy demand in
manufacturing plants. Their research demonstrated
the potential of machine learning for identifying
energy-saving opportunities and improving
production efficiency in industrial facilities. At the
national level, researchers have utilized machine
learning approaches to analyze and predict energy
consumption trends for entire countries or regions.
For example, Khan, et al. [2] conducted a
comprehensive study on energy consumption
forecasting for OPEC countries using a
combination of regression analysis and neural
networks. Their analysis revealed the significance
of socio-economic indicators, energy prices, and
policy interventions in shaping energy demand
dynamics across OPEC nations. While machine
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learning holds promise for energy consumption
prediction, several challenges and limitations
persist. These include data quality issues, model
interpretability concerns, and the need for domain
expertise in feature selection and model tuning.
Addressing these challenges is crucial for ensuring
the reliability and practical utility of machine
learning-based  energy forecasting models.
Previous studies have demonstrated the
effectiveness of machine learning methods in
predicting energy consumption across various
scales and contexts. By leveraging advanced
algorithms and integrating diverse datasets,
researchers have gained valuable insights into the
drivers of energy demand and the potential for
optimizing energy usage in residential, commercial,
industrial, and national settings.

Previous studies on energy consumption prediction
have employed a variety of methodologies,
algorithms, and data sources to achieve accurate
forecasts and gain insights into energy usage
patterns. Many studies utilize time-series analysis
techniques to model temporal patterns in energy
consumption data [21, 22]. This involves analyzing
historical consumption data to identify trends,
seasonality, and other recurring patterns that can
inform future predictions [23]. Regression models
are commonly employed to capture the relationship
between energy consumption and predictor
variables such as temperature, population,
economic indicators, and policy variables [24].
Linear regression, polynomial regression, and
multiple regression are among the regression
techniques used in energy consumption prediction
studies [24]. Machine learning algorithms offer a
powerful alternative to traditional statistical
methods for energy consumption prediction [25].
Supervised learning algorithms such as decision
trees, random forests, support vector machines, and
neural networks have been widely used to build
predictive models that capture complex patterns
and nonlinear relationships in energy data.
Decision tree algorithms are popular for their
simplicity and interpretability. They partition the
data into hierarchical decision nodes based on
feature  attributes, allowing an intuitive
understanding of the decision-making process [26].
Neural network models, inspired by the human
brain's structure, can learn intricate patterns from
large datasets [27]. Multilayer perceptron (MLP),
convolutional neural networks (CNN), and
recurrent neural networks (RNN) are commonly
used architectures for energy consumption
prediction tasks. SVM algorithms are effective for
both regression and classification tasks. They work
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by finding the optimal hyperplane that separates
different classes or predicts continuous values with
maximum margin from the data points.
Longitudinal datasets containing historical energy
consumption records are fundamental for training
and evaluating predictive models [28]. These
datasets may include information on electricity,
natural gas, oil, and other energy sources,
disaggregated by sector (residential, commercial,
industrial) and geographical region. Weather
variables such as temperature, humidity, solar
radiation, and wind speed significantly impact
energy demand. Meteorological data sources
provide essential inputs for modeling weather-
dependent variations in energy consumption
patterns. Demographic data, economic indicators,
and socio-economic variables such as population
size, GDP, urbanization rate, and household
income levels are often included as predictors in
energy consumption prediction models. These
indicators help capture the underlying drivers of
energy demand at both individual and aggregate
levels. Methodologies such as time-series analysis,
regression analysis, and machine learning, coupled
with algorithms like decision trees, neural
networks, and SVMs, have been employed in
similar studies to predict energy consumption [29].
These studies leverage diverse data sources,
including historical energy consumption data,
meteorological data, and  socio-economic
indicators, to build predictive models that can
provide valuable insights for energy planning,
policy-making, and resource allocation.

The primary aim of this study is to develop and
evaluate various machine learning models for
accurately predicting the energy consumption of
OPEC member countries using historical data
obtained from the U.S. Energy Information
Administration (EIA). While numerous studies
have examined energy forecasting, few have
focused specifically on the collective group of
OPEC nations, whose energy consumption trends
are crucial due to their central role in the global oil
and energy market. The novelty of this research lies
in its comparative analysis of ten distinct machine
learning algorithms, offering a robust and data-
driven perspective on energy demand prediction.
Furthermore, this work contributes by identifying
the most accurate and efficient models tailored to
OPEC’s energy patterns, which can support policy-
making, economic planning, and energy
sustainability strategies. The outcomes of this
research are expected to guide future efforts in
data-driven energy modeling and encourage the
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integration of machine learning approaches in
international energy policy analysis.

2. Data Collection and Preprocessing:

For this analysis, we will leverage multiple data
sources to comprehensively understand energy
consumption patterns in OPEC countries and
develop predictive models for forecasting future
consumption trends. Historical energy
consumption data for OPEC countries will serve as
the primary dataset for our analysis. This data,
obtained from the U.S. Energy Information
Administration (EIA) database, includes records of
energy consumption over time, disaggregated by
sector (residential, commercial, industrial) and
energy source (electricity, petroleum, natural gas).
By analyzing historical consumption trends, we
aim to identify energy demand patterns and drivers
in OPEC nations. Socio-economic indicators such
as population demographics, GDP per capita,
urbanization rate, and household income levels will
be sourced from international databases such as the
World Bank and the International Monetary Fund
(IMF). These indicators provide insights into the
socio-economic context and underlying factors
influencing energy consumption patterns in OPEC
countries.

Meteorological data will be sourced from
meteorological agencies and global climate
datasets, including temperature, humidity, solar
radiation, and wind speed. Environmental factors
play a significant role in shaping energy demand,
particularly in sectors such as residential heating
and cooling, transportation, and agriculture. By
integrating meteorological data into our analysis,
we can capture the impact of weather variations on
energy consumption patterns. Information on
energy prices, including the cost of electricity,
petroleum products, and natural gas, will be
obtained from national energy agencies and
international ~ organizations.  Energy  prices
influence consumer behavior and investment
decisions, affecting energy demand across various
sectors. Incorporating price data into our analysis
enables us to assess the relationship between
energy prices and consumption levels in OPEC
countries. By combining data from these diverse
sources, we aim to develop comprehensive
predictive models that account for the multifaceted
nature of energy consumption dynamics in OPEC
nations. Integrating historical consumption data,
socio-economic indicators, environmental factors,
and energy prices will facilitate a holistic
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understanding of energy demand drivers and
enhance the accuracy of our predictions.

Before analysis, the collected data undergoes
thorough preprocessing to ensure its quality and
suitability for predictive modeling. Handling
missing values is the priority, where techniques
like mean, median, or mode substitution are
employed for numerical features, and predictive
models may be utilized to estimate missing values
based on other relevant variables. Subsequently,
normalization techniques such as Min-Max scaling
or Z-score normalization are applied to rescale
numerical features, ensuring that all features
contribute equally to the analysis. Feature
engineering plays a crucial role in enhancing the
dataset's predictive power, involving creating new
features or transforming existing ones to capture
underlying patterns better. Time-related, lag,
interaction, and polynomial features are generated
to account for seasonality, temporal trends,
autocorrelation, and nonlinear relationships in the
data. Outliers are detected, removed, or
transformed using robust methods to mitigate their
impact on predictive models. Furthermore,
categorical variables are encoded into numerical
representations using one-hot or label encoding
techniques to facilitate their incorporation into
machine learning models. These preprocessing
steps collectively ensure that the data is clean,
normalized, and appropriately structured for
analysis, laying the foundation for accurate
forecasting of energy consumption patterns in
OPEC countries.
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3. Machine Learning:

Machine learning, a transformative field within
artificial intelligence, focuses on developing
algorithms and models that enable computer
systems to learn from data and improve their
performance without explicit programming [30].
The essence of machine learning lies in the ability
of systems to identify patterns, make predictions,
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and derive insights from vast and complex datasets.
This multidisciplinary field integrates principles
from computer science, statistics, and mathematics
to create algorithms capable of autonomously
learning and adapting to new information.
Supervised learning involves training models on
labeled datasets, while unsupervised learning
discovers  patterns in  unlabeled  data.
Reinforcement learning emphasizes decision-
making in dynamic environments through trial-
and-error learning. Machine learning applications
span diverse domains, including natural language
processing, image and speech recognition, medical
diagnosis, finance, and predictive analytics. As
technology advances, the pervasive influence of
machine learning continues to reshape industries,
offering solutions to intricate problems and
unlocking unprecedented possibilities in data-
driven decision-making.

3.1 Simple Linear Regression:

It is one of the oldest regression techniques, dating
back to the early 19th century. It assumes a linear
relationship  between the dependent and
independent variables and seeks to find the best-fit
line [31]. A linear regression model that establishes
a relationship between a dependent variable and a
single independent variable. It assumes a linear
relationship and aims to find the best-fitting line
through the data points. It is suitable when there is
a clear linear correlation between input and output
variables. Modeling the link between a single
independent and dependent variable is done
statistically. The objective is to create a linear
connection between the two variables to make
predictions or understand the link between them.
The approach is predicated on the idea that a
straight line may adequately describe the
connection between the variables. A basic linear
regression model's equation is as follows:
Y=p0+pP1-X+¢ (1)

where:

e Y is the dependent variable (the variable y
ou are trying to predict).

e X s the independent variable (the variable
used for prediction).

e S0 is the y-intercept (the value of Y when
Xis 0).

e f1 is the slope of the line (representing th
e change in Y for a unit change in X).

e ¢ is the error term (represents the unobser
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ved factors affecting Y that X does not exp
lain).

3.2 Gaussian Processes:

Developed in the middle of the 20th century,
Gaussian Processes (GPs) is a non-parametric
approach that may depict complex interactions
without requiring a specific functional form [32].
They come in handy for regression and
classification. A mnon-parametric, probabilistic
model that defines a distribution over functions.
For regression tasks, uncertainty estimates are
provided in addition to predictions. Helpful in
effectively communicating prediction uncertainty
and managing nonlinear interactions. Considering
everything, GPs are a powerful and flexible
framework used in machine learning for modeling
and predicting situations where the relationships
between variables are hazy or unclear. GPs are non-
parametric models that may find complex,
nonlinear patterns in data. They are frequently used
in probabilistic classification problems and
regression. It is a powerful and flexible machine-
learning method primarily used for regression and
probabilistic  classification  tasks. Gaussian
Processes offer a powerful, probabilistic approach
to regression that is particularly useful when it is
important to quantify uncertainty in predictions.
However, their computational complexity can be a
limiting factor for very large datasets.

At the core of Gaussian Processes is defining a
distribution over functions. Unlike traditional
machine learning models that provide point
estimates, GPs offer a probabilistic approach,
predicting a distribution of possible functions that
fit the data. GPs assume that any finite set of
function values follows a multivariate Gaussian
distribution. This distribution is defined by a mean
function and a covariance function (kernel). The
mean function (m(x)) represents the average of the
function values at each point (x). It is often
assumed to be zero for simplicity (m(x) = 0).
The covariance function k(x,x") defines the
covariance between pairs of points x and x'. It
encodes assumptions about the function's
properties, such as smoothness and periodicity.
Common kernels include the Radial Basis Function
(RBF), the Gaussian kernel, and the Matérn kernel.
Before observing any data, GPs define a prior
distribution over functions based on the mean and
covariance functions. These prior captures our
initial beliefs about the function's behavior. When
data points (X, y) are observed, where X is the set
of input features, and y is the set of target values,
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GPs update the prior distribution to a posterior
distribution using Bayes' theorem. The posterior
distribution combines the prior and the observed
data, resulting in a new distribution that is more
concentrated around the observed data points. The
updated mean and covariance functions are
computed as follows:

The new mean function m, (x) is influenced by the
observed data and indicates the expected function
value at each point x. The new covariance function
k. (x, x") reflects the updated uncertainty about the
function values after observing the data. Given a
new input x,, the GP model provides a Gaussian
distribution for the corresponding output y,. The
mean of this distribution gives the predicted value,
and the variance gives the uncertainty of the
prediction.

For a set of training points (X,y), where X =
[x1,%0,...,x) and y = [y1,¥2,..., V], the joint
distribution of the training outputs y and the test
outputs y, for test inputs x, is given by:

KX, X)+ o2l K(X, x_%)
(3}1]) ~N <0'( K(ij()T K(x*},cx*) )) @

Here, K(X,X) is the covariance matrix for the
training points, K (X, x,) is the covariance between
training points and test points, and ;2 is the noise
variance.

The conditional distribution of y, given X and y is:
Ve IX,y,wa (m*(x*)rk*(x*'x*)) (3)
where:

m.(x.) = K(x, X)[KX,X) 4)

+ 02y
k.(x., x.)
= K(x., x.)
- K(x, X)[K(X,X) (5)

+ o217 KX, x,)

GPs are flexible and do not assume a fixed form for
the modeled function. GPs provide not just
predictions but also a measure of uncertainty for
those predictions. The choice of kernel allows GPs
to model various types of data patterns. GPs require
the inversion of an n X n matrix, which is
computationally expensive for large datasets
(where n is the number of training points). The
performance of GPs depends on the choice of
kernel and its hyperparameters, which may require
optimization.
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3.3 Multilayer Perceptron (MLP):

MLP traces its roots back to the 1940s as a
fundamental neural network architecture. It gained
popularity in the 1980s with the development of
backpropagation algorithms [33]. MLPs are
versatile and widely used for various machine-
learning tasks—an artificial neural network with
nonlinear activation functions and several layers of
nodes or neurons. MLPs are versatile and can learn
complex patterns. It is well-suited for capturing
intricate data relationships, especially in nonlinear
cases. Multilayer Perceptrons are powerful tools
for various machine learning tasks, leveraging
layers of neurons and nonlinear activation
functions to learn from data. Their effectiveness
depends on careful design, training, and evaluation
to balance complexity and generalization.

A Multilayer Perceptron (MLP) is an artificial
neural network commonly used for classification
and regression tasks. It is composed of multiple
layers of nodes (neurons) that are fully connected,
where each layer transforms the input data using
weights that are adjusted during training. The input
layer consists of nodes representing the input data's
features. The number of nodes in this layer equals
the number of input features—one or more layers
between the input and output layers where
computation is performed. The nodes in these
layers apply activation functions to introduce non-
linearity and enable the network to learn complex
patterns. The final layer produces the output of the
network. The number of nodes in this layer
depends on the task (e.g., one node for regression
multiple nodes for classification). Each connection
between nodes has an associated weight, and each
node (except those in the input layer) has an
associated bias. These parameters are adjusted
during training to minimize network error.
Functions are applied to each node's output in the
hidden and output layers. Common activation
functions include Sigmoid, Tanh, and ReLU
(Rectified Linear Unit).

Input data is fed into the input layer and passed
through the network layer by layer. A weighted sum
of inputs is calculated for each node in a hidden or
output layer, including a bias term.

z = Z(Wi.xi) + b (6)

where z is the weighted sum, w; are the weights, x;
are the inputs, and b is the bias. The weighted sum
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is passed through an activation function to
introduce non-linearity.

a=0d(2) U]

where g is the activation function, and a is the
node's output. The network's output is compared to
the target values using a loss function, such as
Mean Squared Error (MSE) for regression or
Cross-Entropy Loss for classification. The loss
quantifies the difference between the predicted and
actual values. The error from the output layer is
propagated backward through the network to
update the weights and biases. The gradient of the
loss function concerning each weight and bias is
calculated using the chain rule. Weights and biases
are updated using an optimization algorithm such
as Stochastic Gradient Descent (SGD) or Adam.
The update rule for a weight w is:

daL
Wnew = Woid — U% (8)

. . aL . .
where 17 is the learning rate and 5 is the gradient

of the loss function concerning the weight. The
process of forward propagation, loss calculation,
and backpropagation is repeated for many epochs
(iterations) until the network's performance
converges to an acceptable level.

MLPs can model complex, nonlinear relationships
due to their multiple layers and nonlinear activation
functions. Properly trained MLPs can generalize to
unseen data if sufficient training data and
regularization techniques are used. Training MLPs,
especially with many layers and neurons, can be
computationally intensive and require significant
computational resources. MLPs are prone to
overfitting, especially with limited training data.
Techniques such as dropout, regularization, and
cross-validation are often used to mitigate this.
Specify the number of layers, the number of
neurons in each layer, and the activation functions.
Initialize weights and biases, typically using small
random values. A large dataset is used to train the
network, adjusting the weights and biases through
backpropagation and an optimization algorithm.
Assess the network’s performance on a separate
validation set to ensure it generalizes well to new
data. Adjust hyperparameters to improve
performance, such as learning rate, number of
layers, and regularization terms.
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3.4 Sequential Minimal Optimization for
Regression (SMOreg):

Developed by John Platt in the late 1990s, SMOreg
is a support vector machine (SVM) algorithm
tailored for regression tasks [34]. It efficiently
sequentially optimizes the SVM objective
function—a regression version of the Sequential
Minimal Optimization (SMO) algorithm. SMOreg
is mainly designed to solve regression problems
using support vector machines. Effective in
regression tasks where support vector machines are
suitable. SVMs are supervised learning models
commonly used for classification and regression
tasks. In the context of regression, SVMs are called
Support Vector Regression (SVR). The purpose of
the SMO method is to effectively resolve the
quadratic programming (QP) issue that comes up
when training support vector machines (SVMs).
SMO is an efficient algorithm for solving the
quadratic programming problem associated with
SVR. It iteratively optimizes pairs of Lagrange
multipliers, making the optimization process more
tractable than solving the entire problem
simultaneously.

The objective of SVR involves minimizing a
quadratic function subject to linear constraints. The
formulation of the Lagrange dual problem results
in a QP problem that involves maximizing a
quadratic objective function while adhering to
equality and inequality constraints. Initialize the
Lagrange multipliers. a; for each training example.
These multipliers represent the importance of each
data point in the SVR model. In each iteration,
SMO selects a pair of Lagrange multipliers (a;, ;)
for optimization. The selection criteria can be
based on heuristics or optimization strategies to
efficiently identify pairs that violate the KKT
(Karush-Kuhn-Tucker) conditions. Optimize the
chosen pair ((a;, @;)) by holding all other Lagrange
multipliers fixed. The optimization involves
updating the chosen multipliers subject to the
equality constraints derived from the KKT
conditions. Compute the bias terms (b) for the
updated Lagrange multipliers. This involves
considering the support vectors (data points with
non-zero Lagrange multipliers) and their
contributions to the bias. Check whether the
chosen pair a;, @; satisfies the KKT conditions.
The KKT conditions include equality and
inequality  constraints and complementary
slackness conditions. Update the Lagrange
multipliers for the remaining data points to
maintain the equality constraints. This step ensures
that the solution remains feasible. Check for
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convergence by assessing whether the Lagrange
multipliers and bias have changed significantly. If
the changes are below a certain threshold, the
algorithm has converged. Repeat steps 3 to 8 until
convergence is achieved. In each iteration, SMO
selects different pairs of Lagrange multipliers for
optimization. The optimized Lagrange multipliers
and bias determine the final SVR model.

3.5 Instance-Based Learning with k-
Nearest Neighbors (lazy. IBK):

A sort of machine learning in which the model is
not explicitly trained is termed instance-based
learning, also known as lazy learning or instance-
based approaches. Instead, predictions are made
based on the similarity between new instances and
instances from the training dataset. One popular
instance-based learning algorithm is k-Nearest
Neighbors (k-NN). K-Nearest Neighbors (k-NN)
has been used since the 1950s—the lazy.IBK
variant involves minimal training and defers most
computations until predictions are needed [35]. It's
effective for both regression and classification. A
lazy learning algorithm that stores instances of the
training data and classifies new instances based on
their similarity to the nearest neighbors. It is
suitable for cases where instances are locally
clustered, and local information is essential for
prediction.

In the training phase of k-NN, the algorithm stores
the entire training dataset. There is no explicit
training involved; the dataset is the model. Choose
a distance metric to measure the similarity between
instances. The Manhattan distance, the Euclidean
distance, and other similarity metrics are examples
of standard distance metrics. Represent each
instance in the dataset as a point in a
multidimensional space, where each feature
corresponds to a dimension. This representation
allows the algorithm to measure distances between
instances. When a new instance is presented for
prediction or classification, k-NN identifies the k-
nearest neighbors of the recent example in the
feature space based on the chosen distance metric.
"k" is a hyperparameter that determines the number
of neighbors to consider. In classification tasks, the
technique uses the majority class among its k-
nearest neighbors to predict the class label of the
new instance. The technique forecasts the average
of the goal values of the k-nearest neighbors in
regression problems. If there is a tie in the case of
classification or if you want to give more
importance to closer neighbors, you can use
weighted voting. Assign weights to each neighbor
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based on distance and consider the weighted votes
for the final prediction. Tune the hyperparameter
"k" based on the dataset's characteristics and the
desired trade-off between bias and variance. A
smaller k makes the model more sensitive to noise,
while a larger k may smooth out the decision
boundaries. Calculating the distances between each
new instance and every instance in the training set
is the prediction phase in k-NN. For large datasets,
this can be computationally expensive. Efficient
data structures like KD trees or ball trees can be
used to speed up this process.

3.6 k*-Nearest Neighbors (lazy.Kstar):

Modifying k-NN and k*-NN improves efficiency
by using an adaptive approach to select neighbors
based on distances [36]. It maintains simplicity
while addressing some limitations of traditional k-
NN. A variant of the k-Nearest Neighbors (k-NN)
algorithm that dynamically adapts the distance
metric based on local instance density. Effective in
scenarios where the density of instances varies
across the feature space.

The k*-Nearest Neighbors (k*-NN) algorithm is
also known as lazyKstar is an instance-based
learning or lazy learning algorithm used for
classification and regression tasks. Unlike eager
learning algorithms, which build a model from the
training data before making predictions, lazy
learning algorithms delay the learning process until
a prediction is requested. k*-NN stores all
available cases and only computes the results for a
new query when required, using the stored
instances to make predictions. Instead of using a
fixed number of nearest neighbors (k), k*-NN uses
a probability distribution to weigh the influence of
all training instances based on their similarity to the
query instance. The algorithm employs a similarity
measure that can handle various data types and
adapt to the specific data context, making it more
flexible than traditional k-NN.

In the prediction phase, when a new query instance
needs to be classified, the algorithm computes the
distance or similarity between the query instance
and all stored instances. The distance metric can
vary depending on the data type and context. k*-
NN uses a probability distribution to determine the
influence of each training instance based on its
distance from the query instance, using a smooth
weighting function that assigns higher weights to
closer instances and lower weights to farther
instances. For classification tasks, the weighted
votes of the neighbors are aggregated to determine
the class of the query instance. The weighted
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average of the neighbors’ values is computed for
regression tasks. The key steps in k*-NN include
defining the similarity measure, selecting an
appropriate distance metric (e.g., Euclidean,
Manhattan) or a more complex contextual
similarity measure, and computing the weight for
each training instance based on its distance to the
query instance. A common approach is to use a
kernel function that assigns weights based on the
distance, such as a Gaussian kernel. For each new
query instance, the algorithm calculates the
distance or similarity to all stored instances,
computes the weights for each instance based on
the chosen similarity measure, and aggregates the
results to make a prediction. The advantages of k*-
NN include its flexibility in handling different
types of data and adapting the similarity measure
to the specific context, improving prediction
accuracy, and its simplicity in implementing
without requiring a complex training phase.
However, the algorithm can be slow for large
datasets due to the computational complexity of
calculating the distance to all training instances for
each query, and storing all training instances can be
memory-intensive. Overall, k*-NN is a flexible
and powerful instance-based learning method
suitable for various classification and regression
tasks.

3.7 Locally Weighted Learning (lazy.LWL):

Locally Weighted Learning, often called Locally
Weighted Regression (LWR) or Locally Weighted
Scatterplot Smoothing (LOWESS), is a non-
parametric regression technique used for making
predictions locally adaptive. Unlike global
regression methods that assume a constant
relationship across the entire dataset, LWR focuses
on modeling the relationship within a local
neighborhood of the query point. Overall, it was
introduced by At&T Bell Labs in the 1990s, and it
was lazy.LWL is another k-NN variant. It focuses
on local regions of the input space and adapts
weights based on the proximity of instances to the
query point [37]. A lazy learning algorithm that
assigns different weights to different instances
during prediction, providing higher importance to
locally relevant data. It is beneficial in situations
where certain areas of the feature space have more
influence on predictions.

LWR aims to predict the value of a target variable
for a given input by considering a weighted
combination of the observed instances in the
dataset. The weight assigned to each instance is
determined by its proximity to the query point.
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Define a local neighborhood around the query
point. This is typically done using a kernel or
weighting function that assigns higher weights to
instances closer to the query point and lower
weights to instances farther away. Choose a
function (kernel) that assigns weights based on the
distance between each data point and the query
point. Common choices include the Gaussian
kernel or the Epanechnikov kernel. Perform a
regression within the local neighborhood by
assigning weights to each data point based on the
chosen kernel. The weighted regression may be
linear or nonlinear depending on how the variables
relate. Predict the target variable for the query point
by combining the predictions from the locally
weighted regression. LWR adapts to the local
characteristics of the data, allowing for more
flexibility in capturing complex and nonlinear
relationships. It provides a smooth and adaptive
way of modeling the underlying function.

3.8 Random Subspace:

Introduced in the early 2000s, Random Subspace is
an ensemble method that combines multiple
models trained on random subsets of features [38].
It enhances model diversity, reducing overfitting. A
model ensemble technique that builds various
models by training each on a random subset of
features. The final prediction is typically an
average or voting of individual model predictions.
It is helpful when dealing with high-dimensional
data and aiming to reduce the risk of overfitting. In
ovreal, random Subspace is used in ensemble
learning, specifically in methods like Random
Forests. It involves creating multiple subsets or
"subspaces" of the feature space and building
individual models on each of these subsets. The
idea is to introduce diversity among the base
models, making the ensemble more robust and
capable of capturing various aspects of the
underlying data distribution. Even though random
subspace is a valuable ensemble learning technique
(e.g., it balances model diversity and
generalization), it has some limitations, such as
Computational Cost (Training multiple models
with  different feature subsets can be
computationally expensive, especially with large
datasets and a large number of features) and
Interpretability (As the number of features and
trees increases, the interpretability of the model
may decrease.). The Random Subspace method
enhances the performance and robustness of
machine learning models by leveraging the power
of ensemble learning. By training multiple
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classifiers on different random subsets of features,
the method effectively reduces overfitting, handles
noisy features, and improves generalization,
making it a valuable technique for various
predictive modeling tasks.

The Random Subspace method is an ensemble
learning technique primarily used to improve the
performance and robustness of classifiers. It
involves training multiple classifiers on different
random subsets of the feature space and then
combining their predictions. Ensemble Learning: A
technique that combines the predictions of multiple
models to improve the overall performance and
reduce the risk of overfitting. Feature Subset
Selection: Randomly selecting subsets of features
from the original dataset to train different models,
aggregating the predictions from multiple
classifiers to make a final decision. Start with the
original dataset, which consists of N instances and
D features. Randomly select a subset of features
from the original D features. The number of
features selected can be a fixed number or a
proportion of the total features. The selection
process is typically done without replacement,
meaning each feature can appear only once in a
subset. Train each base classifier using the
instances from the dataset but only with the
selected subset of features. This results in multiple
classifiers, each trained on a different "view" of the
data. Different classifiers can be used as base
learners, such as decision trees, support vector
machines, or neural networks. When making
predictions for a new instance, each classifier in the
ensemble makes a prediction based on its subset of
features. Combine the predictions from all
classifiers to produce the final output. This can be
done through various aggregation methods, such as
majority voting for classification or averaging for
regression.

By training classifiers on different subsets of
features, the ensemble reduces the risk of
overfitting to the training data. The method
increases robustness against noisy features, as not
all classifiers are exposed to every feature. The
Random Subspace method can be used with
various base classifiers and applies to both
classification and regression tasks. Training and
maintaining multiple classifiers require more
computational resources and memory. Some
classifiers may produce redundant or highly
correlated predictions if the feature subsets are not
sufficiently diverse.

Determine the number of base classifiers to include
in the ensemble. Randomly choose subsets of
features for each classifier. The size of each subset
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can be specified as a fixed number or a fraction of
the total features. Train each classifier using the
instances from the dataset with their respective
feature subsets. When a new instance is to be
predicted, collect the predictions from all
classifiers and combine them using an appropriate
aggregation method. Suppose you have a dataset
with 100 features, and decide to use ten base
classifiers in your ensemble. For each classifier,
you randomly select 20 out of the 100 features.
Each classifier is then trained on the instances
using only these 20 features. When making a
prediction, each classifier provides an output based
on its trained model, and the final prediction is
determined by combining these outputs, such as by
majority vote for classification tasks.

3.9 Random Committee

The Random Committee method is an ensemble
learning technique that improves the accuracy and
robustness of predictive models by creating
multiple instances of the same base classifier, each
trained on the same dataset but with different
random initializations [39]. These classifiers are
then combined to produce a final output. The key
concepts of Random Committee involve ensemble
learning, random initialization, and classifier
combination. In practice, the original dataset trains
all classifiers in the ensemble, with each classifier
initialized differently. During training, each
classifier learns slightly different patterns from the
data due to its unique initialization. In the
prediction phase, each classifier provides its
prediction for a new instance, and these predictions
are aggregated to produce the final output,
commonly using methods such as majority voting
for classification or averaging for regression. The
advantages of this method include improved
accuracy, robustness to overfitting, and simplicity
in implementation. However, it requires more
computational resources and memory, and the
diversity among classifiers is limited to their
random initializations. The practical steps involve
defining the ensemble size, initializing multiple
instances of the base classifier, training each
classifier on the entire dataset, and aggregating
their predictions for new instances. For example,
using Random Committee with ten instances of a
decision tree classifier, each tree is trained on the
same dataset but with different random seeds
affecting splits or data processing order. The final
prediction is determined by a majority vote or
averaging, enhancing the model's overall
performance and robustness.
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3.10 Random Forest

Building on the concepts of ensemble learning,
Random Committee involves training several
models independently and combining their
predictions [40]. Both generalization and
robustness are improved. Model ensemble building
is similar to Random Subspace, except it employs
different subsets of the training data. Effective at
merging many models' predictions to enhance
generality. In 2001, Leo Breiman also introduced
Random Forest. An ensemble learning method
called Random Forest creates a lot of decision trees
[41]. To decrease overfitting and increase accuracy,
it integrates predictions from several trees. A
method for group learning that produces a lot of
decision trees during training and outputs the class
mode (classification) or mean prediction
(regression) of each tree. Robust and versatile,
suitable for various tasks, and effective at handling
complex connections.

Random Forest is a versatile and widely-used
ensemble learning method for classification and
regression tasks. It works by constructing multiple
decision trees during training and outputting the
mode of the classes (for classification) or the mean
prediction (for regression) of the individual trees.
Random Forests enhance the predictive
performance of decision trees by combining the
outputs of multiple trees trained on different
subsets of the data and feature sets. This ensemble
approach improves accuracy, reduces overfitting,
and provides insights into feature importance,
making it a powerful tool for various machine-
learning tasks. Random Forests belong to the
ensemble learning family, where the predictions of
multiple models (decision trees, in this case) are
combined to improve overall performance and
robustness. Each tree in the forest is a decision tree.
In this flowchart-like structure, each internal node
represents a feature (or attribute), each branch
represents a decision rule, and each leaf node
represents an outcome (or class label). During the
training phase, Random Forest uses bootstrap
aggregating, or bagging. Multiple subsets of the
training data are created by random sampling with
replacement. Each subset is used to train a different
decision tree. This helps reduce the variance and
overfitting typically associated with individual
decision trees.

When splitting nodes in each decision tree,
Random Forests introduce additional randomness
by selecting a random subset of features. This
means that each split is based on only a random
selection of features rather than all features,
promoting diversity among the trees and improving
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model robustness. Each decision tree is trained on
a different subset of the data and grows to its
maximum depth without pruning. The goal is for
each tree to learn different patterns from the data
due to the variations in the bootstrap samples and
the random feature selection. For classification
tasks, when a new input is fed into the Random
Forest, it is passed down to each decision tree in
the forest. Each tree provides a classification, and
the forest outputs the class that receives the
majority vote. Each tree provides a numerical
prediction for regression tasks, and the forest
outputs the average of these predictions.

By averaging multiple trees, Random Forests
reduce the risk of overfitting, which is common
with individual decision trees. Combining multiple
trees generally results in better predictive
performance and robustness to noise in the data.
Random Forests can estimate the importance of
different features in the prediction task, which is
useful for understanding the underlying data.
Training many deep trees can be computationally
intensive and require significant memory,
especially with large datasets. While individual
decision trees are easy to interpret, the overall
Random Forest model, an ensemble of many trees,
can be complex and less interpretable.

4. Results and Discussion:

To accurately evaluate predictive models'
performance, the dataset will be divided into
training and testing sets using a suitable splitting
strategy. Before splitting the data, the dataset will
be randomized to ensure that the samples are
randomly shuffled. This helps prevent any bias or
systematic patterns in the data that could affect
model performance. The dataset will be partitioned
into two subsets: training and testing sets. The
training set will comprise most of the data (e.g., 70-
80%), while the testing set will consist of the
remaining portion (e.g., 20-30%). Suppose the
dataset is imbalanced or contains categorical target
variables. In that case, a stratified splitting
approach may be employed to ensure that the
distribution of classes is preserved in both the
training and testing sets. This helps prevent
potential biases in model evaluation, particularly
for classification tasks. A temporal splitting
approach may be used if the dataset exhibits
temporal dependencies or time-series patterns. In
this case, the dataset is divided into training and
testing sets based on a chronological time frame,
ensuring that training data precedes testing data.
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This approach helps evaluate the model's
generalization ability to unseen future data. In
addition to a single train-test split, cross-validation
techniques such as k-fold cross-validation or time-
series cross-validation may be employed for robust
model evaluation. These techniques involve
repeatedly splitting the data into multiple folds,
training the model on different subsets, and
averaging the performance metrics across folds to
obtain more reliable estimates of model
performance. Sometimes, a separate validation set
may be used for hyperparameter tuning and model
selection. This validation set is distinct from the
training and testing sets. It is used to assess the
performance of different model configurations
before finalizing the chosen model for evaluation
on the testing set.

By following these steps, we ensure that the
predictive models are trained on a representative
subset of the data and evaluated on unseen data to
assess their generalization performance accurately.
This approach helps mitigate overfitting and
provides reliable estimates of model performance
in predicting energy consumption patterns in
OPEC countries. To ensure the accuracy and
reliability of predictive models for energy
consumption in OPEC countries, the dataset will
systematically be divided into training and testing
sets. Initially, the dataset will be randomized to
eliminate inherent biases or patterns. Following
randomization, the dataset will be partitioned into
two subsets, with the majority allocated to the
training set (typically 70-80%) and the remainder
reserved for the testing set. This partitioning
ensures that the models are trained on a
representative sample of the data and evaluated on
unseen data, enabling an accurate assessment of
their generalization performance. Suppose the
dataset is imbalanced or contains categorical target
variables, a stratified splitting approach will be
employed to preserve the distribution of classes or
target variable values in both sets.

Additionally, if temporal dependencies are present,
a temporal splitting approach will be utilized,
ensuring that the training set contains data from
earlier periods while the testing set comprises data
from later periods. Finally, cross-validation
techniques such as k-fold cross validation or time-
series cross-validation may be applied to assess
model stability and generalization ability further.
Following these systematic steps, we aim to
develop predictive models that effectively capture
energy consumption patterns in OPEC countries
and provide reliable energy planning and policy-
making insights.
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We will employ hyperparameter tuning and
rigorous model validation techniques to optimize
the performance of predictive models for energy
consumption in OPEC countries. Hyperparameters,
including model-specific, regularization, learning
rates, and kernel parameters, will be tuned to
enhance model performance and prevent
overfitting. Model validation will involve a train-
validation split of the training data, allowing us to
evaluate various hyperparameter configurations
and select the optimal model. Additionally, cross-
validation techniques such as k-fold cross-
validation or time-series cross-validation may be
utilized to assess model stability and generalization
ability across different subsets of the data.
Performance metrics such as mean squared error
(MSE), root mean squared error (RMSE), mean
absolute error (MAE), coefficient of determination
(R-squared), or classification accuracy will be
employed to evaluate model performance
quantitatively. = By  systematically  tuning
hyperparameters and performing robust model
validation, we aim to develop predictive models
that accurately capture energy consumption
patterns in OPEC countries and provide actionable
insights for energy planning and policy-making.

The performance of various machine learning
methods was evaluated during the training phase,
with each model assessed based on multiple
metrics, including R, Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Relative
Absolute Error (RAE), and Root Relative Squared
Error (RRSE). Among the models, Random
Committee achieved the highest performance with
an R? 0f0.9999, MAE of 0.7411, RMSE of 1.0509,
RAE 0f 1.2199%, and RRSE of 1.2399%, resulting
in a total ranking score of 50 and the top rank
overall. Lazy. Kstar also performed well with an R?
0f 0.9995 and a total ranking score of 44, securing
the second rank—conversely, models such as
lazy. LWL showed relatively poor performance,
with the lowest R? of 0.8857 and the highest errors
across all metrics, leading to the lowest total
ranking score of 5 and rank of 10. Other models
like MLP, Simple Linear Regression, and SMOreg
exhibited strong R? values (0.9964, 0.9957, and
0.9956, respectively) but varied in their ranking
scores, placing them in the middle of the
performance spectrum. Gaussian Processes,
Random Subspace, and Random Forest also
demonstrated high accuracy, with Random Forest
achieving an R? of 0.9990 and a total ranking score
of 38, earning it the third rank. These results
highlight the superior predictive capabilities of
ensemble methods like Random Committee and
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Random Forest in the context of energy
consumption prediction for OPEC countries.

Various machine learning models were evaluated
during the testing phase to determine their
predictive accuracy and reliability. Lazy.Kstar
emerged as the top-performing model with an R? of
0.9965, MAE of 5.5216, RMSE 0f 9.8002, RAE of
8.6381%, and RRSE of 10.1235%, achieving the
highest total ranking score of 46 and securing the
first rank overall. Simple Linear Regression also
demonstrated strong performance with an R? of
0.9948 and a total ranking score of 44, earning it
the second rank. SMOreg ranked third with an R?
0f 0.9943 and a total ranking score of 42. Despite
its high R? value of 0.9949, lazy.IBK scored lower
in other metrics, resulting in a fourth-place rank
with a total ranking score of 35. The MLP model
showed decent performance with an R? of 0.9944
and a ranking score of 33, placing it fifth. Random
Forest and Gaussian Processes, with R? values of
0.9914 and 0.9888, respectively, achieved
moderate performance with ranking scores of 22
and 21, placing them sixth and seventh,
respectively. Despite having an R? of (0.9928,
Random Subspace ranked eighth with a total score
of 15. The Random Committee model, with an R?
of 0.9525, showed weaker performance in the
testing phase, resulting in a ninth-place rank with a
total score of 12. Lazy. LWL was the least effective
model, with a significantly lower R? of 0.8800 and
high error metrics, leading to the lowest total
ranking score of 5 and ranking tenth. These results
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underscore the varying effectiveness of different
machine learning models in predicting energy
consumption for OPEC countries, with Lazy.Kstar
and Simple Linear Regression emerged as the most
reliable models during the testing phase.

The combined performance of various machine
learning models across training and testing phases
highlights their overall effectiveness in predicting
energy consumption for OPEC countries.
Lazy Kstar emerged as the top performer with a
total score of 90, securing the first rank due to its
consistently high R? values and low error metrics
in both phases. Simple Linear Regression also
demonstrated robust performance, achieving a total
score of 72 and the second rank, followed closely
by SMOreg, which attained a total score of 69 and
ranked third. The MLP and Random Committee
models achieved a total score of 62, tying for fourth
place, showcasing their strong predictive
capabilities. Lazy.IBK and Random Forest, with
total scores of 60 each, were ranked sixth,
indicating moderate performance. Despite its
competitive results in some metrics, Gaussian
Processes ranked eighth with a total score of 39.
Random Subspace, with a total score of 26, ranked
ninth. Finally, Lazy. LWL was ranked tenth with
consistently low performance metrics and a total
score of 10. These rankings underscore the varying
effectiveness of machine learning models, with
ensemble methods like Lazy Kstar and Random
Committee generally perform well, while models
like Lazy.LWL lag in predictive accuracy and
reliability.

Table 1. The result of different machine learning methods in a training phase

Proposed Network results Ranking the predicted models Total Ran

models rankin k
R? MAE RMSE RAE RRSE R MA RMSE RA RRS g score

(%) (%) 2 E E E(%)
(%)

Simple Linear 0.995 3.6926 7.8738 6.0779  9.2897 6 5 5 6 6 28 5

Regression 7

Gaussian 0.991 82645 11.892 13.603 14.0316 4 3 3 4 4 18 8

Processes 7 9 1

MLP 0.996 3.8162 7.1862 6.2814  8.4785 7 4 6 5 7 29 4
4

SMOreg 0.995 3.0873 8.0767 5.0815 9.5291 5 6 4 7 5 27 6
6

lazy. IBK 0.967 17232 2.4020 20.085 25.2651 2 8 9 3 3 25 7
6 5

lazy.Kstar 0.999 13113 2.7147 2.1584  3.2029 9 9 8 9 9 44 2
5

lazy.LWL 0.885 29.389 39.510 48.374 46.6160 1 1 1 1 1 5 10
7 7 6 6

Random 0.976 17.035 24213 28.040 28.5682 3 2 2 2 2 11 9

Subspace 1 7 7 3

Random 0.999 07411 1.0509 1.2199 1.2399 10 10 10 10 10 50 1

Committee 9

Random Forest 0.999 2.2571 4.3641  3.7152 5.1489 8 7 7 8 8 38 3
0
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Table 2. The result of different machine learning methods in the testing phase

Proposed Network results Ranking the predicted models Total Ran

models rankin k
R? MAE RMSE RAE RRSE R MA RMS RA RRS g score

(%) (%) 2 E E E E (%)
(%)

Simple 0.994 54106 9.8607 8.4644 10.1860 8 9 9 9 9 44 2

Linear 8

Regression

Gaussian 0.988 11.0340 159029 17.2617 16.4276 3 4 5 4 5 21 7

Processes 8

MLP 0.994 6.3164 105044 9.8814 10.8509 7 6 7 6 7 33 5
4

SMOreg 0.994 49416 10.4019 7.7307 10.7451 6 10 8 10 8 42 3
3

lazy. IBK 0.994 55859 10.7424 8.7386 11.0968 9 7 6 7 6 35 4
9

lazy.Kstar 0996 55216 9.8002 86381 10.1235 10 8 10 8 10 46 1
5

lazy. LWL 0.880 36.9461 515478 57.7988 53.2485 1 1 1 1 1 5 10
0

Random 0.992 127976 19.5344 20.0206 20.1788 5 2 3 2 3 15 8

Subspace 8

Random 0.952 114795 30.6585 17.9586 31.6700 2 3 2 3 2 12 9

Committee 5

Random 0.991 8.0524 16.4844 125973 17.0282 4 5 4 5 4 22 6

Forest 4

Table 3. Ranking of training and testing

Proposed models Network result Total Tota
|
Training dataset Testing dataset score rank
R? MAE RMS RAE RRSE R  MA RMS RA RRS
E (%) (%) E E E E

Simple Linear 6 5 5 6 6 8 9 9 9 9 72 2
Regression
Gaussian 4 3 3 4 4 3 4 5 4 5 39 8
Processes
MLP 7 4 6 5 7 7 6 7 6 7 62 4
SMOreg 5 6 4 7 5 6 10 8 10 8 69 3
lazy. IBK 2 8 9 3 3 9 7 6 7 6 60 6
lazy.Kstar 9 9 8 9 9 10 8 10 8 10 90 1
lazy. LWL 1 1 1 1 1 1 1 1 1 1 10 10
Random Subspace 3 2 2 2 2 5 2 3 2 3 26 9
Random 10 10 10 10 10 2 3 2 3 2 62 4
Committee
Random Forest 8 7 7 8 8 4 5 4 5 4 60 6
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Figure 2. Machine learning ranking

5. Discussion:

The comprehensive analysis of various machine
learning models for predicting energy consumption
in OPEC countries yielded several key insights—
the superior performance of LazyKstar, which
achieved the highest overall rank with a total score
of 90, indicates that this model is highly effective
in capturing complex patterns in the energy
consumption data. Its consistently high R? values
and low error metrics suggest it can provide
reliable and accurate predictions. Simple Linear
Regression, with a total score of 72, also
demonstrated strong predictive capabilities,
highlighting the utility of simpler models in certain
contexts. The moderate performance of models like
MLP and Random Committee, each with a total
score of 62, underscores the importance of neural
networks and ensemble methods in handling
diverse datasets. However, the relatively lower
ranks of models such as Gaussian Processes and
Random Subspace, with scores of 39 and 26,
respectively, suggest that while they are useful,
they may not be as robust for this particular
application—the consistently poor performance of
Lazy.LWL, with a total score of 10, highlights its
limitations and suggests that it may not be suitable
for predicting energy consumption in OPEC
countries. These insights emphasize the
importance of selecting the appropriate model
based on specific data characteristics and

prediction requirements. Overall, the findings
underscore the potential of advanced machine
learning  techniques to enhance energy
consumption forecasting, thereby aiding in more
informed energy planning and policy-making for
OPEC countries.

Applying machine learning methods to predict
energy consumption in OPEC countries offers
several strengths and limitations. One of the main
strengths is the ability of advanced algorithms like
Lazy Kstar and Random Committee capture
complex patterns and interactions in the data,
leading to highly accurate predictions. Additionally,
using cross-validation techniques enhances the
robustness and generalizability of the models.
However, there are several Ilimitations and
potential sources of error. Firstly, the quality and
completeness of the input data from sources such
as www.eia.gov are crucial; any missing or
inaccurate data can significantly affect the model's
performance.

Moreover, the models' reliance on historical data
may not fully account for future changes in energy
consumption  patterns due to unforeseen
geopolitical, economic, or environmental factors.
Another limitation is the potential overfitting of
some models, despite efforts to mitigate this
through regularization and cross-validation.
Overfitting can result in models that perform well
on training data but poorly on unseen data.
Additionally, the computational complexity of
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certain algorithms, such as neural networks and
ensemble methods, may pose challenges regarding
processing time and resource requirements. Lastly,
the interpretability of complex models can be an
issue, making it difficult to derive actionable

insights and explain the predictions to stakeholders.

Addressing these limitations requires ongoing
refinement of models, incorporating more diverse
and high-quality data, and developing methods to
enhance model interpretability and robustness.
The findings from this analysis have significant
implications for policymakers, energy analysts,
and other stakeholders involved in energy planning
and policy-making for OPEC countries. The ability
of advanced machine learning models, particularly
Lazy Kstar and Random Committee, accurately
predicting energy consumption can greatly
enhance the precision of energy demand forecasts.
This, in turn, enables more effective and informed
decision-making regarding resource allocation,
infrastructure investment, and strategic planning.
For policymakers, the insights gained from these
models can inform the development of robust
energy policies that ensure a stable and sustainable
energy supply, adapt to changing demand patterns,
and mitigate the impacts of economic or
geopolitical shifts. Energy analysts can leverage
these predictive models to conduct more nuanced
analyses, identify trends, and evaluate the potential
impacts of different policy scenarios.
Furthermore, stakeholders such as energy
producers and investors can use these predictions
to optimize production schedules, plan for future
capacity expansions, and manage financial risks
more effectively. However, it is essential for all
stakeholders to recognize the limitations and
uncertainties inherent in predictive modeling, such
as data quality and the potential for unforeseen
future events, and to complement these models
with qualitative insights and expert judgment.
Overall, integrating machine learning predictions
into the energy planning process can lead to more
resilient and adaptive energy systems, benefiting
both the OPEC countries and the global energy
market.

6. Conclusions

In this study, we investigated the application of ten
different machine learning algorithms to predict
energy consumption in OPEC countries using
historical data from the U.S. Energy Information
Administration. Among the tested models, the
Random Committee, lazy.Kstar, and Simple Linear
Regression demonstrated the highest performance

Al in Sustainable Energy and Environment, Published Online

in both training and testing phases, with Random
Committee achieving the top overall rank. These
results highlight the potential of ensemble and
instance-based learning methods in accurately
modeling complex energy consumption patterns.
The findings are significant for policymakers and
analysts, as reliable forecasts can support informed
decision-making in energy management and
strategic planning. Future research can expand this
framework by incorporating deep learning methods
and external variables such as economic indicators,
environmental policies, and geopolitical events to
further enhance prediction accuracy.
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