
 

 

AI in Sustainable Energy and Environment (AISES)  
 

 Corresponding author: lokekokfoong@duytan.edu.vn (Loke Kok Foong) 

 

 

 

AI in Sustainable Energy and Environment  
 

Journal homepage: aisesjournal.com 

Online 

 

Employing Four Nature-Inspired Algorithms Hybridized with MLP 

for Accurate Occupancy Detection of an Office Room 

 
Loke Kok Foong 1,2,3  Wan Amizah Wan Jusoh4  Vellapandian Ponnusamy5 

1. Institute of Research and Development, Duy Tan University, Da Nang, Vietnam 
2. School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam 

3. Youth Skills Development Division, Ministry of Youth and Sport, Menara KBS, 62570, Putrajaya, Malaysia 

4. Department of Civil Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400 Pagoh, Muar, Johor 
5. Institute for Youth Research Malaysia (IYRES), Ministry of Youth and Sport, Menara KBS, 62570, Putrajaya, Malaysia 

 

Article Info  Abstract 

Received 1 January 2025 

Received in Revised form 1 March 

2025 

Accepted 5 March 2025 

Published online 7 March 2025 

 

 

 

DOI: 

 This paper investigates the performance of four optimization algorithms—Multi-

Verse Optimization (MVO), Teaching-Learning-Based Optimization (TLBO), Wind-

Driven Optimization (WDO), and Whale Optimization Algorithm (WOA)—in 

optimizing Multilayer Perceptron (MLP) models for occupancy detection in office 

environments. The algorithms were tested across a range of swarm sizes, and their 

performance was evaluated using statistical indices such as Area Under the Curve 

(AUC), with a particular focus on the training and testing phases. The results 

demonstrate that MVO-MLP, with a swarm size of 400, achieved the highest 

performance, yielding AUC scores of 0.9956 for training and 0.9955 for testing. 

TLBO-MLP (swarm size 300) followed closely, with AUC scores of 0.9929 for 

training and 0.9851 for testing. WOA-MLP, using a swarm size of 300, achieved AUC 

scores of 0.9942 for training and 0.9950 for testing. WDO-MLP, with the largest swarm 

size of 500, yielded AUC scores of 0.9829 for both training and testing. The 

optimization algorithms demonstrated strong generalization ability, with MVO-MLP 

ranking first in terms of total score and overall performance. This study highlights the 

potential of optimization algorithms in enhancing the accuracy of occupancy detection 

systems, providing a robust foundation for future developments in smart building 

technologies and energy management systems. 

Keywords 

Artificial intelligence 

Metaheuristic algorithms 

Occupancy detection 

Smart building 

1. Introduction 

The smart grid is necessary for creating 

innovative electrical networks with a flexible, 

effective, durable, and secure architecture. The 

smart grid paradigm may use the most recent 

developments in sensing, communication, and 

metering technologies to enable effective control of 

each power network unit. The building sector of the 

power system gets a lot of attention since it offers 

the most potential for energy savings and uses the 

most electricity. Numerous studies have 

demonstrated using occupancy data to enhance 

energy efficiency and lower building energy 

consumption [1, 2]. Agarwal, Balaji [3] suggested 

an HVAC (heating, ventilation, and air 

conditioning) control mechanism that monitors 

workplace occupancy to determine when to turn 

the system on or off. The simulation results showed 

that using the suggested approach decreased HVAC 

energy consumption by 10% to 15%. According to 

reports, utilizing a control ventilation strategy 

based on occupancy information can save the 

ventilation system up to 55% of its energy 

consumption [4, 5]. Leephakpreeda [6] suggested 

occupancy-based lighting management and 

demonstrated how the system's energy usage might 

be lowered by 35% to 75%. Data from PIR and 

RFID sensors were used by Scott, Brush [7] to 

estimate home occupancy trends for heating 

control. After that, the authors evaluated three 

different control strategies (based on the PreHeat, 

always-on, and scheduled algorithms) and 

calculated a possible 35% energy reduction. 
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According to research by Yokoishi, Mitsugi [8], 

installing a network of PIR and illumination 

sensors for occupancy detection would save 3.5 

hours of power for lighting each day in a campus 

room. Using a learning approach, Peng, Rysanek [9] 

implemented a technique for controlling the 

cooling system in six workplaces. The findings 

indicated that the suggested management approach 

may save energy by 20.3%. Therefore, to reduce 

strain on the power grid and preserve user comfort, 

Building Energy Management Systems (BEMS) is 

advised to make occupancy data easier to use [10, 

11]. Physical elements other than occupancy, such 

as weather, architectural characteristics, and 

equipment efficiency, can also affect a building's 

power consumption behavior [12, 13]. Occupancy, 

a crucial component of human factors, 

characterizes the presence of occupants, their 

consumption patterns, and the condition of the 

interior environment. "Occupancy" is regarded as 

the initial level of occupant behavior modeling, 

according to [14]. Occupancy information may be 

used to illustrate three main features of the 

intended applications at different resolution levels. 

However, these components are difficult for 

individuals to control or modify throughout the 

building's usage [15]: 

• Occupancy resolution: describes the 

number, kind, and identity of people and 

their presence or absence within a 

building's zone. 

• Temporal resolution: shows how 

frequently events happen (in hours, 

minutes, and seconds).  

• Spatial resolution: specifies the building's 

measurements and other important details, 

such as the number of rooms. 

The methods and procedures used to estimate 

building occupancy statistics have been discussed 

in the literature. [2, 14, 16, 17] provided an 

overview and comparison of several occupancy 

data-gathering methods. The advantages and 

disadvantages of occupancy sensing systems and 

occupancy modeling techniques used in 

institutional buildings were investigated by Yang, 

Santamouris and Lee [18]. Mane and Narasimha 

Rao [19] provided an overview of the patterns and 

deficiencies in the field of occupancy sensing 

research. Labeodan, Zeiler [20] reviewed the 

technologies used for office building occupancy 

evaluation. The authors base their categorization 

on the spatial-temporal features of the occupancy-

detecting systems as comparison criteria. Popular 

methods for identifying, counting, and monitoring 

building residents were briefly covered in Saha, 

Florita [21]. The occupancy estimates and 

detection systems were studied in [22, 23] 

according to the kind of sensor used. They also 

contrasted each sensor to assess its benefits and 

drawbacks for occupancy detection. 

Artificial neural networks, often known as 

ANNs, have been used in several studies. Building 

occupancy data was detected by stacking a 

multiclass neural network for occupancy detection. 

Zuraimi, Pantazaras [24] used feed-forward neural 

networks (FFNNs) with CO2 data to predict a 

theater's occupancy. According to the study's 

findings, the ANN's average accuracy was 70%. In 

contrast, [25, 26] reported on a test bed for an 

environmental sensor network and its use for 

occupancy detection in an office building. The 

authors of these papers claim that a neural network 

can identify occupants with a 75% accuracy rate. 

Two occupancy-detecting techniques were 

reported by Kraipeerapun and Amornsamankul 

[27]. For occupancy detection, the first technique 

used stacking with a multiclass neural network, 

while the second method used stacking in 

conjunction with a dual-output neural network. The 

accuracy range found in the validation results was 

68.87% to 91.18%. They used FFNNs with data 

from many sensors by Yang, Li [28] to calculate 

occupancy. In the first of these tests, the accuracy 

of occupancy estimation by each sensor was 

examined together with the performance of a single 

and multi-layered ANN. According to the test 

findings, the detection rate varied between 62.41% 

and 97.97%. In the second study, the researchers 

used artificial neural networks (ANNs) to count 

and identify the number of individuals inhabiting 

an office building. They reported an accuracy range 

of 92.5% to 97.1% for binary occupancy 

recognition and an RMSE of 0.139 to 0.758 for 

occupancy number estimate. Villariba [29] 

provided an example of how to apply and assess a 

feed-forward neural network to identify a home's 

occupancy using electricity usage data. Data from 

three residences was gathered to validate the 

experiment. The ANN was trained using a feature 

set that included temporal and statistical analyses 

of electrical data. The outcomes showed that this 

method could accurately detect 80.98% to 91.36% 

of house occupancy circumstances. Hobson, 

Lowcay [30] estimated the population of an 

academic office building using many sensors and 

ANN configurations, averaging an 83% coefficient 

of determination (R2). They illustrated how useful 

connected WiFi equipment may be in figuring out 

population density.  

Masood, Soh and Chang [31] suggested using 
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wrapper model feature selection and extreme 

learning machines (ELM) to determine the number 

of persons in a classroom. The authors claim that 

their suggested approach performed better than 

filter approaches, with an accuracy range of 74.06% 

to 81.37%. Another comparable strategy was put 

out by Masood, Soh and Jiang [32]. Based on 

environmental factors, the authors assessed 

occupancy using a hybrid feature selection 

approach and wrapper. The accuracy of occupancy 

predictions for experimental data gathered in an 

office setting ranged from 75.63% to 79.17% for 

the WRANK-ELM approach and 76.88% to 77.92% 

for the RIG-ELM methodology. In an independent 

study, Masood, Jiang and Soh [33] suggested 

combining ELM with a hybrid filter-wrapper 

feature selection method to estimate the range of 

occupants. According to the experimental results, 

the HFS-ELM technique was performed with an 

accuracy ranging from 78.12% to 81.67% for the 

estimation of the occupancy range and from 94.37% 

to 98.12% for presence detection. Zou, Lu [34] 

introduced an online sequential extreme learning 

machine (OS-ELM) based indoor localization 

technique. The tests carried out by the researchers 

in a 580 m2 lab showed that OS-ELM was capable 

of 1.973 m object localization. Furthermore, 

WinOSS, a unique WiFi-based non-intrusive 

occupancy detection system, was introduced by 

Zou, Jiang [35]. WinOSS employed OS-ELM, a 

machine-learning localization technique based on 

fingerprinting. Installed over a 1500 square meter 

floor in a commercial building, the gadget achieved 

a 1.385-meter localization accuracy. It also showed 

that the system could successfully count and 

identify the occupants. Ertuğrul, Kaya and 

EminTağluk [36] demonstrated using a recurrent 

extreme learning machine (RELM) to determine 

building occupancy. The authors compared the 

effectiveness of RELM and other techniques from 

published research. The dataset created by 

Candanedo and Feldheim [37] was used for 

experimental validation. According to the 

comparison study's findings, RELM fared better 

than the other approaches, with an accuracy range 

of 99.02% to 99.58%. A feature-scaled extreme 

learning machine (FS-ELM) method was 

developed by Jiang, Masood [38] to determine the 

occupancy count in real time based on CO2 data. 

Experimental data was collected in a 35-person 

office environment to evaluate the suggested 

strategy. The findings demonstrate an accuracy of 

up to 94% and a four-occupant tolerance. 

The primary objective of this study is to propose 

a novel and inventive methodology that combines 

machine learning (ML) and artificial intelligence 

(AI) techniques in a way that complements each 

other to provide accurate occupancy recognition in 

office environments. Because we understand how 

crucial occupancy detection is for optimizing 

resource consumption, energy efficiency, and 

overall system performance, our study attempts to 

push the bounds of current technology. By 

employing evolutionary algorithms, we want to 

increase the system's ability for adaptability and 

optimization. The main goal is to efficiently 

anticipate and categorize occupancy situations 

using advanced machine learning algorithms and 

the power of data collected from several sensors, 

such as motion and infrared sensors. Accurate 

occupancy detection is crucial in smart settings, 

and our novel technique offers a practical way to 

develop intelligent building automation and 

management systems. We broaden our analysis to 

encompass four more methodologies—MVO, 

TLBO, WDO, and WOA—to further explore 

optimization techniques for occupancy detection. 

Every one of these approaches has a different angle 

for improving Multilayer Perceptron's (MLP) 

ability to accurately classify office space 

occupancy. MVO utilizes many search spaces to 

improve exploration, taking its cue from the 

multiverse idea. By simulating the teaching and 

learning process in a classroom, TLBO promotes 

information sharing among algorithm participants. 

While WOA mimics the social behaviors of 

humpback whales to enable effective exploration 

and exploitation of the solution space, WDO uses 

the mechanics of wind flow to direct the 

optimization process. The next sections thoroughly 

examine these techniques and highlight how they 

may be used to optimize MLPs for occupancy 

detection. We want to use these algorithms' special 

abilities to optimize the neural network for precise 

occupancy detection by combining them with MLP. 

The performance of each approach is thoroughly 

examined in the following sections, providing 

insight into the methods' usefulness and 

contributions to occupancy detection in offices. 

This study introduces a novel integration of four 

advanced optimization algorithms—Multi-Verse 

Optimization (MVO), Teaching-Learning-Based 

Optimization (TLBO), Wind-Driven Optimization 

(WDO), and Whale Optimization Algorithm 

(WOA)—with Multilayer Perceptron (MLP) 

models to optimize occupancy detection in office 

environments. Unlike traditional methods, this 

approach leverages nature-inspired algorithms to 

efficiently tune MLP hyperparameters, resulting in 

higher accuracy and robustness in predicting 
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occupancy patterns. The use of MVO-MLP, with 

its superior performance, showcases the potential 

of metaheuristic optimization in improving the 

reliability of occupancy detection systems. The 

study is significant for smart building and energy 

management systems, as accurate occupancy 

prediction can optimize energy usage, enhance 

comfort, and reduce operational costs in real time. 

By exploring multiple optimization algorithms, 

this work offers a comparative analysis, revealing 

insights into the strengths and weaknesses of each 

method, thereby paving the way for more efficient 

and adaptable occupancy detection solutions in the 

future. 

2. Established database 

A workspace of around 5.85 x 3.50 x 3.53 

meters (W x D x H) was used to assess the 

temperature, humidity, light, and CO2 levels 

(Figure 1). The data was obtained using a 

microcontroller. A ZigBee radio attached to the 

recording station was used to transmit the data. A 

digital camera was utilized to ascertain whether the 

room was inhabited. The camera took a time-

stamped photo every minute, which was manually 

examined to confirm the data. Using the timestamp 

from the data, this work calculates the amount of 

seconds that pass between midnight every day 

(NSM). Another way to utilize the date stamp is to 

classify it as a weekend (0) or a weekday (1); this 

variable is called Week Status (WS). An extra 

feature or variable in the data model is the humidity 

ratio (W). The recorded temperature and relative 

humidity were used to determine the humidity ratio, 

represented in kgw/kgda. The data was collected in 

Mons, Belgium, on February 2-3, during the winter. 

Hot water radiators kept the room's temperature 

above 19°C and supplied warmth. Examined data 

sets with open and closed office doors show the 

range of occupancy detection accuracy provided by 

the models. The measurements were taken three or 

four times a minute or every 14 seconds. The 

pertinent minute's average of the findings was 

calculated. The following repository will house the 

data sets and data processing scripts so that 

researchers may replicate the findings and 

eventually enhance model comparison or accuracy 

detection: 

https://github.com/LuisM78/Occupancy-

detection-data 

The process of splitting the dataset into training 

and testing sets is a crucial step in machine learning, 

ensuring that the model is evaluated fairly and 

accurately. In this study, the dataset used for 

occupancy detection in an office environment was 

divided into two parts: the training set and the 

testing set. The training set is used to train the 

model, i.e., to allow the model to learn the 

relationships between the input features and the 

output labels (occupancy status). The testing set, on 

the other hand, is kept separate and is used to 

evaluate the model's performance on unseen data. 

This ensures that the model does not overfit the 

training data and can generalize well to new, 

unseen data. 

For the data split, a common approach was 

followed where a significant portion (usually 

around 70%-80%) of the total dataset is allocated 

to training the model, while the remaining portion 

(typically 20%-30%) is reserved for testing. The 

split ensures that the model has enough data to 

learn the patterns while also providing an unbiased 

evaluation. The training and testing sets are 

typically selected randomly to prevent any bias, 

though techniques such as k-fold cross-validation 

could also be used for more robust evaluation. In 

this study, the training and testing sets were 

selected using standard random splitting, ensuring 

that each set had a representative sample of the data 

for accurate model evaluation. The use of separate 

training and testing datasets is critical for assessing 

the true performance of the model and ensuring its 

effectiveness in real-world applications.  

3. Methodology 

Processing data is the first step in the proposed 

technique. Multi-collinearity analysis is the second 

step. Feature selection is the third step. 

Evolutionary algorithm optimization is the fourth 

step. Building the occupancy detection map is the 

fifth step. Testing and model comparison (linear 

regression analysis) is the sixth step. To facilitate 

the use of evolutionary algorithms, maps and 

geographical data about the susceptibility of 

landslides were created using ArcGIS [39].  
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(a) Temperature (Silicious)  (b) Humidity (RH) 

 

 

(c) Light  (d) CO2 (ppm) 

  

(e) Humidity ratio (kgw/kgda) (f) Occupied [1], non-Occupied [0] 
 

Figure 1: Parameters in the dataset 

 
3.1. Artificial neural network  

The best way to characterize ANNs is as 

supervised machine learning models that can use a 

collection of inputs and known data points to 

potentially categorize unknown data into groups. 

An information processing system (ANN) is 

thought to provide knowledge based on a learning 

mechanism akin to human learning [40-42]. ANNs 

acquire new skills by analyzing historical examples 

and storing the results in a data structure of created 

probability-weighted network correlations. The 

most popular ANN design consists of layers of 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
is

es
jo

ur
na

l.c
om

 o
n 

20
25

-0
8-

23
 ]

 

                             5 / 25

https://www.aisesjournal.com/article-1-21-en.html


Loke Kok Foong et al. 
AI in Sustainable Energy and Environment (AISES), Online 

 

 

372 

neurons linked by correlation weights that convert 

input data into predefined outputs using a 

sophisticated non-linear function. The feedforward 

Multilayer Perceptron neural network model that 

we used in our experiment consisted of three layers 

of neurons: an input layer, a hidden layer, and an 

output layer. Each input occupancy-related 

parameter was represented by a single neuron in 

the input layer; several neurons in the buried layer 

made the input neurons more complex. One neuron 

in the output layer represented the conclusion of 

the process, which, in our instance, decided 

whether an office space was occupied. An ANN 

can learn new information by determining the 

difference between the intended result and its 

forecast. Three layers of neurons made up the 

feedforward Multilayer Perceptron neural network 

model that we employed in our investigation: an 

input layer, a hidden layer, and an output layer. A 

single neuron in the input layer represented every 

input occupancy-related parameter. The input 

neurons' increased complexity results from many 

neurons in the buried layer. The output layer 

consisted of a single neuron representing the 

process completion, which, in our case, determined 

if an office space was occupied. Finding the 

discrepancy between the expected and predicted 

results can be used to train an artificial neural 

network.  
 

 
 

Figure 2. Three layers: input, hidden, and output 

of an MLP. 

3.2. Hybrid model development  

Thirty percent of the data were randomly 

allocated to the training phase, and thirty percent 

were assigned to the testing phase to assess the 

models' performance. The mean absolute error 

(MAE) and mean squared error (RMSE) of the 

models' performance indices are then used. The 

following is an explanation of certain statistics 

indicators:  
 

MSE =
∑ (Pk − Tk)

S
k=1

2

S
 (1) 

  

MAE =
∑ |Pk − Tk|

S
k=1

S
 (2) 

 

S is the total number of training or testing 

samples, and P and T are the anticipated and target 

values. 

Another crucial thing to remember is that 

MATLAB was used to build all the code.  
 

 
Figure 3. An overview of the process for hybrid modeling. 
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3.3. Multi-Verse Optimization (MVO)  

Over the past few decades, metaheuristic 

algorithms have gained popularity for solving 

difficult combinatorial optimization problems [43-

49]. A novel metaheuristic algorithm called the 

MVO has been presented based on the ideas of the 

multiverse in physics. The academic community 

has taken notice of this new trend [50]. In the 

context of the MVO framework, each element 

represents a variable that helps determine the 

optimal solution, and the solution to the 

optimization problem is found when all the 

components are added together. An inflation rate 

that is precisely proportionate to the total value of 

the objective function that the solution represents 

has been assigned to each component. The notion 

of swapping components in several locations, 

comparable to cosmological wormholes, black and 

white holes, inspires the MVO search method. 

Three factors are taken into account by MVO while 

searching: the population size, represented by Q; 

the likelihood that wormholes exist, represented by 

𝑝𝑤 ; and the trip distance rate, represented by r. 

Further information in greater detail may be found 

in [50]. 

Initializing the algorithm's parameters— Q, 𝑝𝑤, 

𝑟̃, and the halting condition—is the first stage in the 

process. After that, a population of universes is 

generated, each examined in detail. When i = 1, 

2, . . ., Q, the expression 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑀)  is 
used to denote a particular universe inside the 

population.  
 

xij = Lj + (Uj − Lj) ∙ r,    j = 1, 2, … ,M (3) 
 

Both the "upper" and "lower" boundaries of the 

"jth variable" are designated inside the parameters 

of this particular research project by the notations 

"𝑈𝑗" and "𝐿𝑗," respectively. M is the total number 

of variables, while r is a randomly selected integer 

from the interval [0, 1]. It's crucial to update the 

universe set before moving on to Step 3 by 

completing the following sub steps in the right 

order: In Step 3.1 of the process, objects are 

transferred via white and black hole tunnels using 

an algorithm called "Object exchange in S.F.". In 

Step 3.2 of the algorithm, named "S.F. Object 

exchange through a wormhole tunnel," objects can 

be exchanged through a wormhole tunnel. The 

universe must be the most advantageous thus far, 

updated in Step 4. Not to mention, Step 5 only 

allows for creating the finest possible world under 

specific halting conditions. The procedure has to be 

started from Step 3, and further updates must be 

applied if these requirements are not satisfied.  

3.4. Teaching-Learning-Based Optimization 

(TLBO) 

The TLBO method for teaching and learning 

optimization was first presented in [51-55]. The 

way the TLBO algorithm works is by taking into 

account how a teacher affects the academic 

achievement of pupils in a classroom. This 

algorithm replicates the instructional procedure 

involving students and a teacher. This algorithm's 

two main learning modes are the teacher phase, 

where students learn from their instructor, and the 

learner phase, where students learn through peer 

interactions. The two basic components of this 

algorithm are learners and a teacher. The results of 

this optimization method are represented by the 

academic performance or grades of the students, 

which are impacted by the instructor's quality of 

instruction. As a result, educators are seen as 

intelligent people who work hard to help their 

pupils get better grades or test results. Additionally, 

peer-to-peer learning can benefit students and 

improve their academic performance. 

A group of persons engaged in the learning 

process are involved in a technique called teaching-

learning-based optimization. In this approach, 

learners are viewed as the population and provided 

with design factors to gather data from them as 

subjects. The final results of learners are 

comparable to the fitness value of the optimization 

problem. This method also considers the instructor, 

who can probably choose the student who responds 

best. The Learner and Teacher phases are the two 

separate stages of the effort required in teaching-

learning-based optimization. The following is a list 

of the specific duties associated with each phase.  

a) Teacher phase 

The first step of the TLBO algorithm is a 

teacher guiding pupils. The instructor's goal in this 

phase is to get the class's mean performance up to 

their standard (𝑇𝐴  ) from the arbitrary value 𝑀1 . 

However, doing so would be impossible and 

require the teacher's abilities. As a result, the class 

mean, 𝑀1 , may only be moved by a teacher to a 

number, 𝑀2, that is higher than 𝑀1. 𝑇𝑖  will try to 

raise 𝑀𝑗  to their level at any iteration i, where 𝑇𝑖  

stands for the teacher and 𝑀𝑗  for the current mean. 

This produces a new mean, 𝑀𝑛𝑒𝑤 , whose 

difference from the existing mean is given by a 

particular equation [53].  
 

Difference_Meani = ri(Mnew − TF Mj) (4) 
 

The formula above shows that 𝑟𝑖  is a random 
number in the range of 0 to 1, and that is the 
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teaching factor determining the degree of the 

mean's value fluctuation. As a heuristic step, 𝑇𝐹   
can have a value of 2 or 1, randomly selected with 

an equal chance.  
 

TF = round[1 + rand(0,1){2 − 1}] (5) 
 

The method will generate a teaching factor at 

random during execution, which will be between 1 

and 2. A score of one signifies that knowledge has 

not improved, but a score of two implies that all of 

the material has been transmitted. Values in the 

intermediate range suggest that different quantities 

of knowledge are transferred depending on the 

learner's capacities. Although the 1-2 range values 

were attempted to be used in this article, no 

difference in the results was seen. Therefore, it is 

advised that the teaching factor round up to 2 or 1 

to simplify the process. However, any number 

between 1 and 2 might still be considered a 

potential teaching aspect. 

The following equation, which considers the 

same variance in mean, modifies the current result. 

There is no difference in the number of sentences 

that result:  
 

Xnew,i = Xold,i + Difference_Meani (6) 
 

b) Learner phase 

This part deals with the second stage of the 

algorithm, in which students add to their 

knowledge by interacting with one another. To 

increase their knowledge, students interact 

randomly with other students and absorb new 

material if the other student knows more. This 

phase's learning process may be mathematically 

expressed as follows. 

𝑋𝑖 and  𝑋𝑗  are two distinct learners, where i ≠ j, 

and at any given iteration i,  
 

Xnew,i = Xold,i + ri(Xi − Xj)      if f(Xi)

< f(Xj) 
(7) 

  

Xnew,i = Xold,i + ri(Xj − Xi)      if f(Xj)

< f(Xi) 
(8) 

 

The admission of a new variable 𝑋𝑛𝑒𝑤   in the 

context of teaching-learning-based optimization is 

contingent upon its superior function value. Six 

steps can be used to summarize the implementation 

process. First, use random generation to initialize 

and assess the population and design variables. 

Second, as a teacher, choose the top student for 

each topic and determine the average performance 

of students in each subject. Thirdly, use a teaching 

factor (TF) to calculate the variance between the 

current and optimal mean results. Fourth, use an 

equation (6) to update students' knowledge with 

that of their professors. Fifth, use equations (7) and 

(8) to share information with other students to keep 

their knowledge current. Lastly, continue from 

steps 2 through 5 until the termination 

requirements are met.  

3.5. Wind-Driven Optimization (WDO)  

Bayraktar, Komurcu and Werner [56] created 

the WDO metaheuristic method. The algorithm is 

built based on the flow of air parcels. Four forces—

gravitational force (FG), pressure gradient force 

(FPG), Coriolis force (FC), and frictional force—

are involved in this task's completion (FF). Air 

packets are believed to have no dimensions and 

weight to make things easier to work out. The force 

resulting from the pressure gradient is represented 

in Equation (9) when P and δV represent the air 

volume and pressure gradient, respectively. FF 

counteracts the air movement of FPG (Equation 

(10)). To deliver packages to the Earth's core, FG 

(Equation (11)) is in charge. Air parcel motion 

deflections can be attributed to FC (Equation (12)).  
 

FPG
⃗⃗ ⃗⃗ ⃗⃗  = −∇P. δV (9) 
  

FF
⃗⃗⃗⃗ = −ρ α u⃗  (10) 
  

FG
⃗⃗⃗⃗ = ρ. δV. g⃗  (11) 
  

FC
⃗⃗⃗⃗ = −2θ × u⃗  (12) 

 

where α is a frictional coefficient, θ is the earth's 

rotation, 𝑢⃗  is the wind velocity vector, ρ represents 
the density of a short air parcel, and g is the 

gravitational constant. 

When the forces above are included in the ideal 

gas equation, the following outcome is obtained 

[57]:  
 

∇u⃗⃗ ⃗⃗  = 𝑔 + (−∇𝑃.
𝑅𝑇

𝑃𝑐𝑢𝑟
) + (−𝛼𝑢⃗ )

+ (
−2𝜃 × 𝑢⃗ 𝑅𝑇

𝑃𝑐𝑢𝑟
) 

(13) 

 

Because air velocity is related to pressure, a rise 

in pressure causes the velocity to alter. 

Consequently, we have had to modify Equation 

(13). The packages are arranged according to the 

least pressure applied. To update location and 

velocity, apply the following equations, where i 

stands for rank:  
 

Unew
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (1 − α)u⃗ cur − gxcur + 

(|1 −
1

i
| . (xopt − xcur)RT) + 

(
C. U⃗⃗ otherdirection

i
) 

(14) 

  

Xnew
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Xold

⃗⃗ ⃗⃗ ⃗⃗  ⃗+ Unew
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (15) 

 

Where x is the air parcel location, 𝑢⃗ 𝑐𝑢𝑟  and 
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𝑢𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ are allocated to the velocity of the current and 
upcoming iterations, and 𝑥𝑜𝑝𝑡   and 𝑥𝑐𝑢𝑟  are the 

optimal and current positions. Concurrently, 𝐶 =

−2𝑅𝑇 and  𝑈⃗⃗ 𝑜𝑡ℎ𝑒𝑟𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐹𝐶
⃗⃗⃗⃗ . 

The updating process is finished when the 

predefined objective function (OF) or number of 

repeats is attained. The corresponding settings are 

applied to the air parcel with the lowest OF. 

Previous research has produced further information 

[56, 58, 59].  

3.6. Whale Optimization Algorithm (WOA) 

The whale optimization algorithm (WOA) was 

created by Australians Mirjalili and Lewis [60] as 

a novel use of swarm intelligence to enhance 

optimization. It was designed to resemble how 

whales hunt in the wild: they locate groups of 

whales, encircle them, and attack. The search 

procedure is optimized by prey and other 

parameters. The peculiar way that humpback 

whales hunt is what makes them so extraordinary. 

We call this practice "bubble-net feeding." 

Humpback whales prefer to hunt krill or tiny 

schools of fish near the surface. It has been 

discovered that the pattern in which these bubbles 

are formed resembles a circle or a "9." Before 2011, 

this tendency was solely assessed using surface 

observations. Nevertheless, using tag sensors, 

researchers investigated this behavior. They 

acquired 300 feeding encounters from nine 

humpback whales equipped with bubble-net tags. 

Two motions linked to bubbles were identified and 

labeled as "double loops" and "upward spirals." In 

the former action, humpback whales descend to a 

depth of around 12 meters, encircle their prey with 

a swirling bubble, and then rise again. The coral 

loop, lobtail, and catch loop are the three stages of 

the last movement. A great deal of information is 

accessible on these acts. The whale emits many 

bubbles near the prey and then executes a single, 

massive loop to capture it during the coral loop. 

During the lobtail, the whale sways its tail back and 

forth before lunging for its meal. 

In terms of convergence rate and accuracy of 

solutions, WOA performs better. The BP neural 

network is utilized in this study to determine the 

parameters and structure of the network, and the 

whale algorithm is used to optimize the network. 

The weights of the BP neural network are then 

trained using the whale approach. The network 

immediately receives the learning result and uses it 

as training data. As a result, the whale algorithm's 

global random search power is preserved, the 

nonlinear and self-learning potential of the BP 

neural network is finally utilized, and the accuracy 

of credit card fraud detection is only slightly 

improved. 

A unique heuristic optimization technique 

called the Whale Optimization Method (WOA) 

was motivated by humpback whale hunting. The 

following are the key algorithms:  

• The surroundings of the victim 
 

{
D = |CX∗(t) − X(t)|

X(t + 1) − X∗(t) − AD
 (16) 

 

where A and C are coefficients, t is the current 

number of iterations, represents the whale's current 

location, and represents the current best fish 

position vector.  

• The act of hunting  
 

X(t + 1) = {
X∗(t) − AD, p < Pi        

X∗(t) + Dpe
bl cos(2πl), p ≥ Pi 

 (17) 

 

The distance between the whale and the prey is 

represented by 𝐷𝑝 = |𝑋∗(𝑡) − 𝑋(𝑡)|, where b is a 

constant, l is a random value within (-1, 1), and 

𝑃𝑖  and 1  𝑃𝑖 , respectively, pick the shrinkage 

bracketing mechanism and the selection spiral 

model for the set probability.  

• Look for prey  
 

{
𝐷 = |𝐶𝑋𝑟𝑎𝑛𝑑 − 𝑋(𝑡)|

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴𝐷
 (18) 

 

One of them, called rand X, is a random whale 

vector that, based on the position of the random 

whale, changes the positions of other whales. As a 

result, the whale moves away from its prey, 

improving its ability to find better prey, increasing 

the system's exploratory potential, and allowing the 

WOA algorithm to scan the globe.  

4. Results and discussion 

The MATLAB environment tests evaluates and 

simulates the study's model structures. Several 

networks with varying layers and types of neurons 

have been constructed to ascertain which 

architecture performs best. The accuracy of the 

approach is also affected by changes to the neuron 

count and the ANN layer. Many optimization 

methodologies begin with the initial optimization 

results. An increased AUC number corresponds to 

an increased AUC score. The subsequent 

subsections make use of the outcomes of these 

networks. More proof of the relationship between 

the Mean Squared Error (MSE) and the number of 

neurons of each type in each buried layer can be 

found in Figure 4. Interestingly, the ratings were 

based on the accuracy of the method's predictions. 

For instance, the model scores higher if it achieves 
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the lowest Mean Squared Error (MSE).  

The first stage of discovery will provide the 

groundwork for subsequent optimization tactics. 

As a result, the following sections use these 

networks' outputs. Structures with lower mean 

squared errors (MSEs) yield more accurate 

predictions. Regression and classification issues 

can be more precisely resolved with the estimated 

values of the proposed model. To predict the 

vulnerability of highway construction, Figure 4 

shows the variation in mean squared error (MSE) 

as a function of repetitions for the proposed MVO-

MLP, TLBO-MLP, WDO-MLP, and WOA-MLP 

designs. The results show that 400, 300, 500, and 

300 (𝑁𝑠𝑤𝑎𝑟𝑚 ) were chosen by the MVO-MLP, 

TLBO-MLP, WDO-MLP, and WOA-MLP as the 

best options.  

Figures 4 to 8 present the performance results 

of various optimization algorithms (MVO, TLBO, 

WDO, and WOA) integrated with Multilayer 

Perceptron (MLP) models for occupancy detection 

in office environments. Figure 4 compares the best-

fit models for each optimization approach, 

highlighting how each algorithm tunes the MLP 

structure to achieve optimal performance. In 

Figures 5 to 8, the training and testing accuracies 

of the models are shown separately for each 

algorithm. For each optimization method, the 

training dataset accuracy is plotted first, followed 

by the testing dataset accuracy, allowing for a 

direct comparison of how well the models perform 

during the training phase versus their ability to 

generalize to new, unseen data.
 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4: The model that fits the data the best (a) MVOMLP, (b) TLBOMLP, (c) WDOMLP, and (d) WOAMLP 

 

Each of the figures reveals the strengths and 

weaknesses of the different optimization 

approaches. The MVOMLP model (Figure 5) 

demonstrates robust training and testing accuracy, 

with particularly strong performance during both 

stages. The TLBOMLP model (Figure 6) exhibits 

similar trends, with the highest accuracy observed 

at a swarm size of 300. The WDOMLP (Figure 7) 

and WOAMLP (Figure 8) models also show 

favorable performance, with the WOAMLP 

achieving impressive testing accuracy across the 

board. These results collectively suggest that 
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optimization algorithms such as MVO, TLBO, 

WDO, and WOA can significantly enhance the 

performance of MLP models in occupancy 

detection, each offering unique strengths 

depending on the dataset and optimization 

parameters used. 

Comparing the actual data with the hybrid 

design's projected quantities yields the second 

stage's results. Reader operating characteristic 

(ROC) curves are the most often used technique for 

determining the optimal hybrid design. As 

mentioned earlier, the graph illustrates how the 

diagnostic abilities of a binary classifier system 

vary with changes in the discriminating threshold. 

An AUC value of 1 indicates the best possible 

outcome, whereas 0 indicates no relationship. The 

actual zero value of an expected value is unrelated 

to it. The AUC assesses a classifier's ability to 

discriminate between many classes as a summary 

of ROC curves. AUC (Area Under the Curve) 

increases indicate how well the method can 

discriminate between positive and negative 

categories. Figures 5-8 display the ROC curves for 

the MVO-MLP, TLBO-MLP, WDO-MLP, and 

WOA-MLP techniques. The best forecasting 

method was developed for swarm sizes of 400, 300, 

500, and 300 based on the results of the iteration 

phase (Table 1-4). The MVO-MLP, TLBO-MLP, 

WDO-MLP, and WOA-MLP methodologies are all 

incorporated. This result was obtained after 40,000 

cycles of modeling and assessment using Mean 

Squared Error (MSE), Figures 5-8.  
 

  
(a) MVOMLP- training datasets (b) MVOMLP-testing datasets 

Figure 5: Accuracy results for the training dataset for several proposed MVOMLP structures. 

 

  
(a) TLBOMLP- training datasets (b) TLBOMLP-testing datasets 

Figure 6: Accuracy results for the training dataset for several proposed TLBOMLP structures. 
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(a) WDOMLP- training datasets (b) WDOMLP-testing datasets 

Figure 7: Accuracy results for the training dataset for several proposed WDOMLP structures. 

 

  

(a) WOAMLP- training datasets (b) WOAMLP-testing datasets 

Figure 8: Accuracy results for the training dataset for several proposed WOAMLP structures 

Table 1 presents the AUC statistical indices-

based network findings for MVO integrated with 

Multilayer Perceptron (MVOMLP) across various 

planned swarm sizes. MVOMLP consistently 

achieves high AUC scores for both training and 

testing datasets across various swarm sizes, 

indicating the effectiveness of MVO in optimizing 

the Multilayer Perceptron (MLP) for accurate 

occupancy detection. Combining training and 

testing AUC scores, the scoring system results in 

diverse total scores for each configuration. Higher 

total scores are indicative of superior performance. 

Swarm size 400 achieves the highest score of 18, 

suggesting its effectiveness in training and testing 

scenarios. The model's performance exhibits 

sensitivity to changes in swarm size, with 

variations in AUC scores observed. Swarm size 

400, despite achieving the highest total score, 

shows that larger population size in the MVO 

optimization process may lead to enhanced 

performance in terms of occupancy detection. 

MVOMLP demonstrates a relatively balanced 

performance between training and testing datasets. 

This balance is crucial for ensuring the model 

generalizes well to unseen data, minimizing the 

risk of overfitting. Swarm size 400 attains the top 

rank with the highest total score of 18, indicating 

superior performance. This suggests that larger 

population size in the MVO optimization process 

leads to enhanced performance in terms of 

occupancy detection. In summary, considering the 

correct criteria where higher ranks and total scores 

are desirable, Table 1 reaffirms the effectiveness of 

Multi-Verse Optimization when integrated with 

Multilayer Perceptron for occupancy detection. 

The consistently high AUC scores, the impact of 
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swarm size on performance, and the balanced 

training-testing performance collectively highlight 

the potential of MVO in optimizing MLPs for 

accurate occupancy detection in office 

environments, with a preference for larger 

population sizes.  

Table 2 presents the AUC statistical indices-

based network findings for TLBO with Multilayer 

Perceptron (TLBOMLP) across various swarm 

sizes. TLBOMLP consistently exhibits high AUC 

scores for training and testing datasets across 

swarm sizes. This indicates the efficacy of TLBO 

in optimizing the Multilayer Perceptron (MLP) for 

accurate occupancy detection. Considering both 

training and testing AUC scores, the scoring 

system results in diverse total scores for each 

configuration. Higher total scores indicate superior 

performance. Swarm size 300 achieves the highest 

total score of 13, demonstrating its effectiveness in 

training and testing scenarios. Swarm size 300 

attains the top rank with the highest total score of 

13, indicating superior performance. This suggests 

that larger population size in the TLBO 

optimization process leads to enhanced 

performance in terms of occupancy detection. 

TLBOMLP maintains a balanced performance 

between training and testing datasets, indicating 

the model's ability to generalize well to unseen data 

and avoid overfitting. The model's performance 

shows sensitivity to changes in swarm size, as 

reflected in the fluctuations of AUC scores. Larger 

swarm sizes, particularly 300 and 400, consistently 

demonstrate superior performance. In summary, 

Table 2 underscores the effectiveness of Teaching-

Learning-Based Optimization when integrated 

with Multilayer Perceptron for occupancy 

detection. The consistent AUC scores, the impact 

of swarm size on performance, and the balanced 

training-testing performance collectively highlight 

the potential of TLBO in optimizing MLPs for 

accurate occupancy detection in office 

environments, with a preference for larger 

population sizes, especially 300 in this case.  

Table 3 presents the AUC statistical indices-

based network findings for WDO with Multilayer 

Perceptron (WDOMLP) across various planned 

swarm sizes. WDOMLP consistently achieves high 

AUC scores for training and testing datasets across 

swarm sizes. This suggests the efficacy of WDO in 

optimizing the Multilayer Perceptron (MLP) for 

accurate occupancy detection. Considering both 

training and testing AUC scores, the scoring 

system results in consistent total scores for each 

configuration. Higher total scores indicate superior 

performance. Notably, all swarm sizes achieve the 

same total score of 3, emphasizing the consistency 

of WDOMLP's performance. Swarm sizes from 

100 to 500 all share the top rank with the same total 

score of 3, indicating that no particular swarm size 

outperforms the others according to this scoring 

system. WDOMLP demonstrates a balanced 

performance between training and testing datasets, 

indicating the model's ability to generalize well to 

unseen data and avoid overfitting. In this case, the 

model's performance does not exhibit sensitivity to 

changes in swarm size, as all swarm sizes achieve 

the same total score and rank. In summary, Table 3 

underscores the consistent performance of Wind-

Driven Optimization when integrated with 

Multilayer Perceptron for occupancy detection. 

The uniformity in AUC scores, the balanced 

training-testing performance, and the lack of 

sensitivity to swarm size collectively highlight the 

stability of WDOMLP across different population 

sizes for accurate occupancy detection in office 

environments.  

Table 4 outlines the AUC statistical indices-

based network findings for the WOA with 

Multilayer Perceptron (WOAMLP) across various 

planned swarm sizes. WOAMLP exhibits varied 

AUC scores for training and testing datasets across 

swarm sizes. This suggests that the WOA has an 

impact on optimizing the Multilayer Perceptron 

(MLP) for accurate occupancy detection, with 

different swarm sizes influencing the model's 

performance. Considering both training and testing 

AUC scores, the scoring system results in diverse 

total scores for each configuration. Higher total 

scores are indicative of superior performance. 

Swarm size 300 achieves the highest total score of 

19, indicating its effectiveness in training and 

testing scenarios. Swarm size 300 attains the top 

rank with the highest total score of 19, indicating 

superior performance. This suggests that moderate 

population size in the WOA optimization process 

leads to enhanced performance in terms of 

occupancy detection. WOAMLP demonstrates a 

relatively balanced performance between training 

and testing datasets, indicating the model's ability 

to generalize well to unseen data and avoid 

overfitting. The model's performance shows 

sensitivity to changes in swarm size, as reflected in 

the fluctuations of AUC scores. Swarm sizes 300 

and 400 consistently demonstrate superior 

performance, while smaller and larger swarm sizes 

show variations in their effectiveness. In summary, 

Table 4 emphasizes the impact of the Whale 

Optimization Algorithm when integrated with 

Multilayer Perceptron for occupancy detection. 

The varied AUC scores, the impact of swarm size 
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on performance, and the balanced training-testing 

performance collectively highlight the potential of 

WOAMLP in optimizing MLPs for accurate 

occupancy detection in office environments, with a 

preference for moderate population sizes, 

especially 300 in this case.  

 
Table 1: Network discoveries based on AUC statistical metrics for many intended MVOMLP swarm sizes. 

 

Population 

size  

Network AUC results Scoring 
Total score  RANK  

Training Testing Training Testing 

50 0.9947 0.9947 1 1 2 10 

100 0.9955 0.9957 7 10 17 2 

150 0.9953 0.9952 6 4 10 7 

200 0.9950 0.9950 2 3 5 8 

250 0.9957 0.9952 10 5 15 3 

300 0.9953 0.9954 5 7 12 5 

350 0.9952 0.9954 4 7 11 6 

400 0.9956 0.9955 9 9 18 1 

450 0.9951 0.9949 3 2 5 8 

500 0.9955 0.9952 8 6 14 4 

 
Table 2: Network discoveries based on AUC statistical metrics for many intended TLBOMLP swarm sizes. 

 

Population 

size  

Network AUC results Scoring 
Total score  RANK  

Training Testing Training Testing 

50 0.9836 0.9850 5 1 6 6 

100 0.9837 0.9851 6 3 9 2 

150 0.9837 0.9851 6 3 9 2 

200 0.9829 0.9851 1 3 4 7 

250 0.9837 0.9851 6 3 9 2 

300 0.9929 0.9851 10 3 13 1 

350 0.9829 0.9851 1 3 4 7 

400 0.9837 0.9851 6 3 9 2 

450 0.9829 0.9850 1 1 2 10 

500 0.9829 0.9851 1 3 4 7 

 
Table 3: Network discoveries based on AUC statistical metrics for many intended WDOMLP swarm sizes. 

 

Population 

size  

Network AUC results Scoring 
Total score  RANK  

Training Testing Training Testing 

50 0.9825 0.9851 1 1 2 10 

100 0.9829 0.9851 2 1 3 1 

150 0.9829 0.9851 2 1 3 1 

200 0.9829 0.9851 2 1 3 1 

250 0.9829 0.9851 2 1 3 1 

300 0.9829 0.9851 2 1 3 1 

350 0.9829 0.9851 2 1 3 1 

400 0.9829 0.9851 2 1 3 1 

450 0.9829 0.9851 2 1 3 1 
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500 0.9829 0.9851 2 1 3 1 

 
Table 4: Network discoveries based on AUC statistical metrics for many intended WOAMLP swarm sizes. 

 

Population 

size  

Network AUC results Scoring 
Total score  RANK  

Training Testing Training Testing 

50 0.9908 0.9920 1 1 2 10 

100 0.9930 0.9938 5 6 11 5 

150 0.9912 0.9926 3 3 6 8 

200 0.9939 0.9949 8 9 17 3 

250 0.9938 0.9938 7 5 12 4 

300 0.9942 0.9950 9 10 19 1 

350 0.9911 0.9921 2 2 4 9 

400 0.9948 0.9948 10 8 18 2 

450 0.9932 0.9936 6 4 10 7 

500 0.9926 0.9942 4 7 11 5 

 

An essential component of assessing the 

performance of the MVO-MLP, TLBO-MLP, 

WDO-MLP, and WOA-MLP networks is 

examining the prediction errors during the 

validation and test phases, as shown in Figure 9-12. 

Using the error histogram model, the highest and 

smallest prediction errors are displayed. The data 

in the figures below show that the trained network 

may not be reliable in predicting how sensitive 

occupancy detection is to certain circumstances.  

The provided information has been utilized to 

accurately assess the recommended methodologies. 

This study was based on an analysis and inspection 

of the provided figures, which depict the early 

testing and training stages of the MVO-MLP, 

TLBO-MLP, WDO-MLP, and WOA-MLP 

networks. 400, 300, 500, and 300 employees were 

managing these networks. The quality of training 

affects the architecture's resilience, the networks' 

precision, and the kind of data used for initial 

validation and testing. Consequently, the final 

models may evaluate and forecast both recognized 

and indeterminate data. 

4.1. Measurment of occupancy detection using 

MLP 

Table 5 provides a summary of the outcomes for 

all suggested methods, incorporating Multi-Verse 

Optimization (MVO), Teaching-Learning-Based 

Optimization (TLBO), Wind-Driven Optimization 

(WDO), and Whale Optimization Algorithm 

(WOA) when integrated with Multilayer 

Perceptron (MLP) for occupancy detection. Swarm 

size 400 achieves the highest AUC scores for 

training and testing datasets, resulting in a balanced 

and competitive total score of 8. This performance 

leads to MVO-MLP securing the top rank. TLBO-

MLP, with a swarm size of 300, demonstrates 

consistently high AUC scores and achieves the 

second-highest total score of 3. The model exhibits 

balanced performance, earning the third rank. 

WDO-MLP, with a swarm size of 500, achieves 

moderate AUC scores. While the model attains the 

highest total score of 4, indicating balanced 

performance, it secures the fourth rank due to lower 

AUC scores than MVO-MLP and TLBO-MLP. 

WOA-MLP, with a swarm size of 300, showcases 

strong AUC scores, resulting in a competitive total 

score of 6. The model secures the second rank, 

emphasizing its effectiveness in occupancy 

detection. In summary, Table 5 provides a concise 

overview of the comparative performance of 

different optimization algorithms when integrated 

with MLP for occupancy detection. MVO-MLP 

stands out with the top rank, demonstrating 

superior performance, while TLBO-MLP and 

WOA-MLP exhibit competitive results. WDO-

MLP, while achieving a balanced total score, falls 

slightly behind in AUC scores and overall ranking. 

These findings can guide the selection of 

optimization algorithms based on specific 

performance criteria and preferences for swarm 

size in occupancy detection applications. 
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a) MVO 400-training 

 

 
b) MVO 400-Testing 

Figure 9: The MVOMLP-recommended ideal match model, together with its error and MAE frequency 
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a) TLBOMLP 300-training 

 

 
b) TLBOMLP 300-Testing 

Figure 10: The TLBOMLP-recommended ideal match model, together with its error and MAE frequency 
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a) WDOMLP 500-training 

 

 
b) WDOMLP 500-Testing 

Figure 11: The WDOMLP-recommended ideal match model, together with its error and MAE frequency 
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a) WOAMLP 300-training 

 

 
b) WOAMLP 300-Testing 

Figure 12: The WOAMLP-recommended ideal match model, together with its error and MAE frequency 
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Table 5: The outcomes of networks for all suggested methods. 
 

Methods  Swarm size  
AUC Scoring 

Total Score  Rank  

Training Testing Training Testing 

MVO-MLP 400 0.9956 0.9955 4 4 8 1 

TLBO-MLP 300 0.9929 0.9851 2 1 3 3 

WDO-MLP 500 0.9829 0.9851 1 1 2 4 

WOA-MLP 300 0.9942 0.9950 3 3 6 2 

 

4.2. Taylor diagrams 

In meteorology and climate research, the Taylor 

diagram—named for Karl E. Taylor—is a 

graphical tool used to assess how well many 

datasets align with a reference dataset. It is 

frequently used to evaluate the performance of 

model outputs on observational data, such as 

numerical simulations or climate models. 

Researchers may identify the most sophisticated 

datasets with this graphic, which provides a 

complete perspective of model performance across 

several domains. For evaluating and comparing 

models, Taylor diagrams are useful tools. They 

could also help create the model by drawing 

attention to places that need work. They conduct a 

detailed analysis of the model's performance 

regarding variability, correlation, and overall 

agreement with observational data. It was first 

introduced by Taylor [61] and provides a graphical 

depiction of the degree of similarity between a 

pattern or set of patterns and data. The standard 

deviations, the centered root-mean-square 

difference, and the similarity score between the two 

patterns are obtained from the correlation. These 

photos are very helpful for analyzing complicated 

models with several components or assessing how 

well different models work, as the IPCC has shown 

[62]. The Taylor diagram in Figure 13 compares the 

model's capacity to the accuracy with which it can 

identify occupancy in the present datasets. On four 

models with labels, we performed a statistical 

analysis. The position of each label on the map 

shows how well the predicted precipitation pattern 

of the model matches the observed data. The 

pattern correlation coefficients for the MVO-MLP, 

TLBO-MLP, WDO-MLP, and WOA-MLP are 

about 0.95.  

 

  
 

a) Training 
 

b) Testing 
 

Figure 13. The occupancy detection Taylor diagram 

 

4.3. Discussion 

The findings presented in this study shed light 

on the efficacy of various optimization algorithms 

when integrated with Multilayer Perceptron (MLP) 

for occupancy detection in office environments. 

The comparative analysis of optimization 

algorithms, including MVO, TLBO, WDO, and 

WOA, reveals varying degrees of effectiveness in 
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optimizing MLPs for accurate occupancy detection. 

MVO emerges as a standout performer, securing 

the top rank with the highest total score. The 

algorithm's ability to explore diverse solution 

spaces contributes to its effectiveness in optimizing 

MLPs for occupancy detection, as reflected in 

superior AUC scores. TLBO demonstrates 

consistent and competitive performance, earning 

the third rank. The algorithm's teaching and 

learning phases contribute to its ability to converge 

toward optimal solutions, as balanced AUC scores 

indicate. WOA also exhibits strong performance, 

securing the second rank. The algorithm's mimicry 

of the hunting behavior of whales proves effective 

in optimizing MLPs for accurate occupancy 

detection, leading to competitive AUC scores and 

a balanced total score. WDO achieves moderate 

performance, securing the fourth rank. While the 

algorithm demonstrates balanced AUC and total 

scores, it falls slightly behind MVO-MLP, TLBO-

MLP, and WOA-MLP regarding overall 

effectiveness. The optimal swarm size varies for 

each algorithm. MVO-MLP achieves peak 

performance with a swarm size of 400, while 

TLBO-MLP and WOA-MLP excel with swarm 

sizes 300. WDO-MLP, with a swarm size of 500, 

achieves moderate performance. All algorithms 

exhibit a commendable ability to generalize well to 

unseen data, avoiding overfitting. Sensitivity to 

changes in swarm size is evident, emphasizing the 

importance of selecting an appropriate population 

size based on the algorithm's characteristics. The 

study provides valuable insights for practitioners 

seeking optimal solutions for occupancy detection 

in office environments. MVO, TLBO, WDO, and 

WOA present viable options with unique strengths 

and considerations. This paper highlights the 

nuanced performance of optimization algorithms in 

the context of MLP-based occupancy detection. 

The findings offer guidance for selecting an 

algorithm based on specific performance criteria. 

MVO is a robust choice for achieving accurate and 

reliable occupancy detection in real-world office 

scenarios.  

5. Conclusion 

Optimizing energy usage and guaranteeing 

occupant comfort need building management 

systems integrating comprehensive occupancy data. 

The accuracy and granularity of occupancy data are 

improved by using high-precision technology, such 

as thermal and optical cameras, as well as 

environmental sensors like carbon dioxide (CO2) 

and passive infrared (PIR). Because of this 

accuracy, building systems can be more precisely 

controlled and adapted, significantly reducing 

energy use and improving occupant comfort. As 

technology develops, intelligent and energy-

efficient future buildings will be greatly influenced 

by the smooth integration of many sensors and 

advanced data processing techniques. In the last 

article, we attempted to use various techniques 

inspired by machine learning and artificial 

intelligence to obtain favorable occupancy 

detection results in office spaces. The following are 

the outcomes: 

• The comparative analysis revealed varying 

degrees of performance among the 

optimization algorithms. MVO 

demonstrated exceptional effectiveness, 

securing the top rank with superior AUC 

scores. TLBO and WOA also exhibited 

competitive performance, while WDO 

demonstrated moderate effectiveness. 

• The optimal swarm size for each algorithm 

was identified, emphasizing the 

significance of selecting an appropriate 

population size. MVO-MLP achieved peak 

performance with a swarm size of 400, 

while TLBO-MLP and WOA-MLP 

excelled with swarm sizes 300. WDO-

MLP demonstrated moderate performance 

with a swarm size of 500. 

• All algorithms demonstrated a 

commendable ability to generalize well to 

unseen data, highlighting their suitability 

for real-world occupancy detection 

applications. Sensitivity to changes in 

swarm size underscored the importance of 

carefully selecting the population size 

based on algorithm characteristics. 

• The study provides practical insights for 

practitioners seeking optimal solutions for 

occupancy detection in office 

environments. MVO, TLBO, WDO, and 

WOA offer viable options with unique 

strengths and considerations, allowing for 

informed algorithm selection based on 

specific application requirements. 

Future research endeavors may explore the 

application of these optimization algorithms in 

diverse contexts, consider additional algorithms, or 

investigate hybrid approaches for further 

improving the accuracy and efficiency of 

occupancy detection systems. Additionally, 

exploring the robustness of these algorithms in the 

presence of noisy or dynamic environments could 

enhance their practical utility. This study 

contributes valuable insights into the selection and 
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application of optimization algorithms for MLP-

based occupancy detection. The findings offer a 

foundation for enhancing the development of 

intelligent occupancy detection systems, with 

MVO standing out as a particularly promising 

algorithm. The versatility of these algorithms 

positions them as valuable tools for advancing 

smart building technologies and energy-efficient 

management systems.  
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